Bayesian spectral analysis models for quantile regression with Dirichlet process mixtures

被引:7
|
作者
Jo, Seongil [1 ]
Roh, Taeyoung [1 ]
Choi, Taeryon [1 ]
机构
[1] Korea Univ, Dept Stat, Seoul, South Korea
基金
新加坡国家研究基金会;
关键词
62F15; 62G08; shrinkage priors; model comparison; Dirichlet process mixtures; cosine basis; variable selection; Markov chain Monte Carlo; asymmetric Laplace; STRUCTURED ADDITIVE REGRESSION; POSTERIOR CONSISTENCY; VARIABLE SELECTION; NONPARAMETRIC APPROACH; INFERENCE; CONJUGATE; PRIORS; LASSO; SPIKE;
D O I
10.1080/10485252.2015.1124877
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper presents a Bayesian analysis of partially linear additive models for quantile regression. We develop a semiparametric Bayesian approach to quantile regression models using a spectral representation of the nonparametric regression functions and the Dirichlet process (DP) mixture for error distribution. We also consider Bayesian variable selection procedures for both parametric and nonparametric components in a partially linear additive model structure based on the Bayesian shrinkage priors via a stochastic search algorithm. Based on the proposed Bayesian semiparametric additive quantile regression model referred to as BSAQ, the Bayesian inference is considered for estimation and model selection. For the posterior computation, we design a simple and efficient Gibbs sampler based on a location-scale mixture of exponential and normal distributions for an asymmetric Laplace distribution, which facilitates the commonly used collapsed Gibbs sampling algorithms for the DP mixture models. Additionally, we discuss the asymptotic property of the sempiparametric quantile regression model in terms of consistency of posterior distribution. Simulation studies and real data application examples illustrate the proposed method and compare it with Bayesian quantile regression methods in the literature.
引用
收藏
页码:177 / 206
页数:30
相关论文
共 50 条
  • [1] Bayesian multivariate quantile regression using Dependent Dirichlet Process prior
    Bhattacharya, Indrabati
    Ghosal, Subhashis
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2021, 185
  • [2] Weighted Dirichlet Process Mixture Models for Linear and Quantile Regression
    Elliott, Michael R.
    Xia, Xi
    [J]. JOURNAL OF OFFICIAL STATISTICS, 2021, 37 (01) : 71 - 95
  • [3] Bayesian inference for dynamic models with dirichlet process mixtures
    Caron, Francois
    Davy, Manuel
    Doucet, Arnaud
    Duflos, Emmanuel
    Vanheeghe, Philippe
    [J]. 2006 9th International Conference on Information Fusion, Vols 1-4, 2006, : 138 - 145
  • [4] Bayesian inference for linear dynamic models with Dirichlet process mixtures
    Caron, Francois
    Davy, Manuel
    Doucet, Arnaud
    Duflos, Emmanuel
    Vanheeghe, Philippe
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2008, 56 (01) : 71 - 84
  • [5] Bayesian Quantile Regression for Ordinal Models
    Rahman, Mohammad Arshad
    [J]. BAYESIAN ANALYSIS, 2016, 11 (01): : 1 - 24
  • [6] Bayesian quantile regression for longitudinal data models
    Luo, Youxi
    Lian, Heng
    Tian, Maozai
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2012, 82 (11) : 1635 - 1649
  • [7] Bayesian quantile regression for hierarchical linear models
    Yu, Yang
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2015, 85 (17) : 3451 - 3467
  • [8] Finite mixtures of quantile and M-quantile regression models
    Alfo, Marco
    Salvati, Nicola
    Ranallli, M. Giovanna
    [J]. STATISTICS AND COMPUTING, 2017, 27 (02) : 547 - 570
  • [9] Bayesian Nonparametric Instrumental Variables Regression Based on Penalized Splines and Dirichlet Process Mixtures
    Wiesenfarth, Manuel
    Matias Hisgen, Carlos
    Kneib, Thomas
    Cadarso-Suarez, Carmen
    [J]. JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2014, 32 (03) : 468 - 482
  • [10] Bayesian Analysis of Composite Quantile Regression
    Alhamzawi R.
    [J]. Statistics in Biosciences, 2016, 8 (2) : 358 - 373