On a property of solutions of a special class of degenerate elliptic equations

被引:0
|
作者
Smolkin, GA
机构
关键词
D O I
10.1070/RM1996v051n03ABEH002944
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:561 / 562
页数:2
相关论文
共 50 条
  • [21] EXISTENCE OF SOLUTIONS FOR A CLASS OF DEGENERATE ELLIPTIC EQUATIONS IN P(X)-SOBOLEV SPACES
    Aharrouch, Benali
    Boukhrij, Mohamed
    Bennouna, Jaouad
    [J]. TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2018, 51 (02) : 389 - 411
  • [22] Existence and approximation of solutions for a class of degenerate elliptic equations with Neumann boundary condition
    Cavalheiro, Albo Carlos
    [J]. NOTE DI MATEMATICA, 2020, 40 (02): : 63 - 81
  • [23] Regularity of a class of quasilinear degenerate elliptic equations
    Guan, PF
    [J]. ADVANCES IN MATHEMATICS, 1997, 132 (01) : 24 - 45
  • [24] EXISTENCE RESULTS FOR A CLASS OF DEGENERATE ELLIPTIC EQUATIONS
    di Blasio, G.
    Feo, F.
    Posteraro, M. R.
    [J]. DIFFERENTIAL AND INTEGRAL EQUATIONS, 2008, 21 (3-4) : 387 - 400
  • [25] A priori estimates for a class of degenerate elliptic equations
    de Miranda, L. H.
    Montenegro, M.
    [J]. NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2013, 20 (05): : 1683 - 1699
  • [26] Regularity theorems for a class of degenerate elliptic equations
    Song, Qiaozhen
    Wang, Yan
    [J]. ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2016, (102) : 1 - 14
  • [27] A priori estimates for a class of degenerate elliptic equations
    L. H. de Miranda
    M. Montenegro
    [J]. Nonlinear Differential Equations and Applications NoDEA, 2013, 20 : 1683 - 1699
  • [28] HOLDER ESTIMATES FOR A CLASS OF DEGENERATE ELLIPTIC EQUATIONS
    Song, Qiaozhen
    Wang, Lihe
    Li, Dongsheng
    [J]. ACTA MATHEMATICA SCIENTIA, 2013, 33 (04) : 1202 - 1218
  • [29] Viscosity solutions for degenerate and nonmonotone elliptic equations
    Kawohl, B
    Kutev, N
    [J]. APPLIED NONLINEAR ANALYSIS, 1999, : 231 - 254
  • [30] Irregular solutions of linear degenerate elliptic equations
    Franchi, B
    Serapioni, R
    Cassano, FS
    [J]. POTENTIAL ANALYSIS, 1998, 9 (03) : 201 - 216