A priori estimates for a class of degenerate elliptic equations

被引:4
|
作者
de Miranda, L. H. [1 ]
Montenegro, M. [2 ]
机构
[1] Univ Brasilia, Dept Matemat, BR-7091090 Brasilia, DF, Brazil
[2] Univ Estadual Campinas, Dept Matemat, IMECC, BR-13083859 Campinas, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Degenerate equations; p-Laplacian; Regularity theory; Nikolskii spaces; GLOBAL REGULARITY; SOBOLEV SPACES;
D O I
10.1007/s00030-013-0225-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we investigate the regularity of solutions for the following degenerate partial differential equation {-Delta pu + u = f in Omega, partial derivative u/partial derivative v = 0 on partial derivative Omega, when f is an element of L-q(Omega), p > 2 and q >= 2. If u is a weak solution in W-1,W-p (Omega), we obtain estimates for u in the Nikolskii space N-1+2/r,N-r (Omega), where r = q(p - 2) + 2, in terms of the L-q norm of f. In particular, due to embedding theorems of Nikolskii spaces into Sobolev spaces, we conclude that parallel to u parallel to(r)(W1+2/r-epsilon,r(Omega)) <= C (parallel to f parallel to(q)(Lq(Omega)) + parallel to f parallel to(r)(Lq(Omega)) + parallel to f parallel to(2r/p)(Lq(Omega)) for every epsilon > 0 sufficiently small. Moreover, we prove that the resolvent operator is continuous and compact in W-1,W-r (Omega).
引用
收藏
页码:1683 / 1699
页数:17
相关论文
共 50 条