A DISCRETE UNIFORMIZATION THEOREM FOR POLYHEDRAL SURFACES

被引:65
|
作者
Gu, Xianfeng David [1 ]
Luo, Feng [2 ]
Sun, Jian [3 ]
Wu, Tianqi [4 ]
机构
[1] SUNY Stony Brook, Dept Comp Sci, Stony Brook, NY 11794 USA
[2] Rutgers State Univ, Dept Math, Piscataway, NJ 08854 USA
[3] Tsinghua Univ, Yau Math Sci Ctr, Beijing 100084, Peoples R China
[4] NYU, Courant Inst Math, 251 Mercer St, New York, NY 10012 USA
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
Polyhedral metrics; discrete uniformization; discrete conformality; variational principle; and Delaunay triangulation; CONFORMAL-MAPS; CONVERGENCE; CURVATURE; RIGIDITY; METRICS;
D O I
10.4310/jdg/1527040872
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A discrete conformality for polyhedral metrics on surfaces is introduced in this paper. It is shown that each polyhedral metric on a compact surface is discrete conformal to a constant curvature polyhedral metric which is unique up to scaling. Furthermore, the constant curvature metric can be found using a finite dimensional variational principle.
引用
收藏
页码:223 / 256
页数:34
相关论文
共 50 条