We prove that any length metric space homeomorphic to a 2-manifold with boundary, also called a length surface, is the Gromov-Hausdorff limit of polyhedral surfaces with controlled geometry. As an application, using the classical uniformization theorem for Riemann surfaces and a limiting argument, we establish a general "one-sided" quasiconformal uniformization theorem for length surfaces with locally finite Hausdorff 2-measure. Our approach yields a new proof of the Bonk-Kleiner theorem characterizing Ahlfors 2-regular quasispheres.