POLYHEDRAL APPROXIMATION OF METRIC SURFACES AND APPLICATIONS TO UNIFORMIZATION

被引:9
|
作者
Ntalampekos, Dimitrios [1 ]
Romney, Matthew [1 ]
机构
[1] SUNY Stony Brook, Math Dept, Stony Brook, NY 11794 USA
基金
美国国家科学基金会;
关键词
QUASI-SYMMETRIC PARAMETRIZATIONS; SPACES;
D O I
10.1215/00127094-2022-0061
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that any length metric space homeomorphic to a 2-manifold with boundary, also called a length surface, is the Gromov-Hausdorff limit of polyhedral surfaces with controlled geometry. As an application, using the classical uniformization theorem for Riemann surfaces and a limiting argument, we establish a general "one-sided" quasiconformal uniformization theorem for length surfaces with locally finite Hausdorff 2-measure. Our approach yields a new proof of the Bonk-Kleiner theorem characterizing Ahlfors 2-regular quasispheres.
引用
收藏
页码:1673 / 1734
页数:62
相关论文
共 50 条