Discrete Yamabe Problem for Polyhedral Surfaces

被引:0
|
作者
Kourimska, Hana Dal Poz [1 ]
机构
[1] IST Austria, Campus 1, A-3400 Klosterneuburg, Austria
基金
奥地利科学基金会;
关键词
Delaunay triangulation; Discrete Gaussian curvature; Discrete conformal equivalence; Hyperbolic geometry; Piecewise linear metric;
D O I
10.1007/s00454-023-00484-2
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We study a new discretization of the Gaussian curvature for polyhedral surfaces. This discrete Gaussian curvature is defined on each conical singularity of a polyhedral surface as the quotient of the angle defect and the area of the Voronoi cell corresponding to the singularity. We divide polyhedral surfaces into discrete conformal classes using a generalization of discrete conformal equivalence pioneered by Feng Luo. We subsequently show that, in every discrete conformal class, there exists a polyhedral surface with constant discrete Gaussian curvature. We also provide explicit examples to demonstrate that this surface is in general not unique.
引用
收藏
页码:123 / 153
页数:31
相关论文
共 50 条
  • [1] Discrete Yamabe Problem for Polyhedral Surfaces
    Hana Dal Poz Kouřimská
    Discrete & Computational Geometry, 2023, 70 : 123 - 153
  • [2] The discrete Markus-Yamabe problem
    Cima, A
    Gasull, A
    Manosas, F
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1999, 35 (03) : 343 - 354
  • [3] A DISCRETE UNIFORMIZATION THEOREM FOR POLYHEDRAL SURFACES
    Gu, Xianfeng David
    Luo, Feng
    Sun, Jian
    Wu, Tianqi
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2018, 109 (02) : 223 - 256
  • [4] Discrete Conformal Equivalence of Polyhedral Surfaces
    Gillespie, Mark
    Springborn, Boris
    Crane, Keenan
    ACM TRANSACTIONS ON GRAPHICS, 2021, 40 (04):
  • [5] Prescribing discrete Gaussian curvature on polyhedral surfaces
    Xu, Xu
    Zheng, Chao
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2022, 61 (03)
  • [6] A DISCRETE UNIFORMIZATION THEOREM FOR POLYHEDRAL SURFACES II
    Gu, Xianfeng
    Guo, Ren
    Luo, Feng
    Sun, Jian
    Wu, Tianqi
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2018, 109 (03) : 431 - 466
  • [7] Discrete conformal geometry of polyhedral surfaces and its convergence
    Luo, Feng
    Sun, Jian
    Wu, Tianqi
    GEOMETRY & TOPOLOGY, 2022, 26 (03) : 937 - 987
  • [8] The discrete Markus-Yamabe problem for symmetric planar polynomial maps
    Alarcon, Begona
    Castro, Sofia B. S. D.
    Labouriau, Isabel S.
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2012, 23 (03): : 603 - 608
  • [9] THE YAMABE PROBLEM
    LEE, JM
    PARKER, TH
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1987, 17 (01) : 37 - 91
  • [10] A NOTE ON THE YAMABE PROBLEM
    Wang Xujia
    JOURNAL OF PARTIAL DIFFERENTIAL EQUATIONS, 2005, 18 (04): : 322 - 326