Discrete Yamabe Problem for Polyhedral Surfaces

被引:0
|
作者
Kourimska, Hana Dal Poz [1 ]
机构
[1] IST Austria, Campus 1, A-3400 Klosterneuburg, Austria
基金
奥地利科学基金会;
关键词
Delaunay triangulation; Discrete Gaussian curvature; Discrete conformal equivalence; Hyperbolic geometry; Piecewise linear metric;
D O I
10.1007/s00454-023-00484-2
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We study a new discretization of the Gaussian curvature for polyhedral surfaces. This discrete Gaussian curvature is defined on each conical singularity of a polyhedral surface as the quotient of the angle defect and the area of the Voronoi cell corresponding to the singularity. We divide polyhedral surfaces into discrete conformal classes using a generalization of discrete conformal equivalence pioneered by Feng Luo. We subsequently show that, in every discrete conformal class, there exists a polyhedral surface with constant discrete Gaussian curvature. We also provide explicit examples to demonstrate that this surface is in general not unique.
引用
收藏
页码:123 / 153
页数:31
相关论文
共 50 条
  • [31] Delaunay Triangulations of Polyhedral Surfaces, a Discrete Laplace-Beltrami Operator and Applications
    Bobenko, Alexander I.
    PROCEEDINGS OF THE TWENTY-FOURTH ANNUAL SYMPOSIUM ON COMPUTATIONAL GEOMETRY (SGG'08), 2008, : 38 - 38
  • [32] Yamabe Problem for Kropina Metrics
    Najafi, Behzad
    Youseflavi, Negin
    Tayebi, Akbar
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2021, 47 (SUPPL 1) : 323 - 333
  • [33] On the Chern-Yamabe problem
    Angella, Daniele
    Calamai, Simone
    Spotti, Cristiano
    MATHEMATICAL RESEARCH LETTERS, 2017, 24 (03) : 645 - 677
  • [34] THE YAMABE PROBLEM ON MANIFOLDS WITH BOUNDARY
    ESCOBAR, JF
    JOURNAL OF DIFFERENTIAL GEOMETRY, 1992, 35 (01) : 21 - 84
  • [35] The Yamabe problem on stratified spaces
    Kazuo Akutagawa
    Gilles Carron
    Rafe Mazzeo
    Geometric and Functional Analysis, 2014, 24 : 1039 - 1079
  • [36] Multiple solutions to the Yamabe problem
    Egorov, Yu. V.
    Il'yasov, Ya. Sh.
    DOKLADY MATHEMATICS, 2006, 74 (01) : 484 - 486
  • [37] About the Lorentzian Yamabe problem
    Ginoux, Nicolas
    GEOMETRIAE DEDICATA, 2015, 174 (01) : 287 - 309
  • [38] Equivariant CR Yamabe problem
    Ho, Pak Tung
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2025, 204 (01) : 289 - 306
  • [39] YAMABE PROBLEM ON SCALAR CURVATURE
    AUBIN, T
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1975, 280 (11): : 721 - 724
  • [40] Compactness of solutions to the Yamabe problem
    Li, YY
    Zhang, L
    COMPTES RENDUS MATHEMATIQUE, 2004, 338 (09) : 693 - 695