SYNCHRONIZATION BY NOISE FOR ORDER-PRESERVING RANDOM DYNAMICAL SYSTEMS

被引:21
|
作者
Flandoli, Franco [3 ]
Gess, Benjamin [1 ]
Scheutzow, Michael [2 ]
机构
[1] Max Planck Inst Math Sci, Inselstr 22, D-04103 Leipzig, Germany
[2] Tech Univ Berlin, Inst Matemat, MA 7-5, D-10623 Berlin, Germany
[3] Dipartimento Matemat, Largo Bruno Pontecorvo 5, I-56127 Pisa, Italy
来源
ANNALS OF PROBABILITY | 2017年 / 45卷 / 02期
关键词
Synchronization; random dynamical system; random attractor; order-preserving RDS; stochastic differential equation; statistical equilibrium; POROUS-MEDIA EQUATIONS; SMALL RANDOM PERTURBATIONS; DIFFERENTIAL-EQUATIONS; EVOLUTION-EQUATIONS; INVARIANT-MEASURES; RANDOM ATTRACTOR; STABILIZATION; SPACES; CHAOS;
D O I
10.1214/16-AOP1088
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We provide sufficient conditions for weak synchronization/stabilization by noise for order-preserving random dynamical systems on Polish spaces. That is, under these conditions we prove the existence of a weak point attractor consisting of a single random point. This generalizes previous results in two directions: First, we do not restrict to Banach spaces, and second, we do not require the partial order to be admissible nor normal. As a second main result and application, we prove weak synchronization by noise for stochastic porous media equations with additive noise.
引用
收藏
页码:1325 / 1350
页数:26
相关论文
共 50 条
  • [1] Order-preserving random dynamical systems
    不详
    MONOTONE RANDOM SYSTEMS - THEORY AND APPLICATIONS, 2002, 1779 : 83 - 111
  • [2] Order-preserving random dynamical systems: Equilibria, attractors, applications
    Arnold, L
    Chueshov, I
    DYNAMICS AND STABILITY OF SYSTEMS, 1998, 13 (03): : 265 - 280
  • [3] A limit set trichotomy for order-preserving random systems
    Arnold, L
    Chueshov, I
    POSITIVITY, 2001, 5 (02) : 95 - 114
  • [4] A Limit Set Trichotomy for Order-Preserving Random Systems
    Ludwig Arnold
    Igor Chueshov
    Positivity, 2001, 5 : 95 - 114
  • [5] Sublinear discrete-time order-preserving dynamical systems
    Jiang, JF
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1996, 119 : 561 - 574
  • [6] CONVERGENCE AND STRUCTURE THEOREMS FOR ORDER-PRESERVING DYNAMICAL SYSTEMS WITH MASS CONSERVATION
    Ogiwara, Toshiko
    Hilhorst, Danielle
    Matano, Hiroshi
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2020, 40 (06) : 3883 - 3907
  • [7] NONNEGATIVE RANDOM MEASURES AND ORDER-PRESERVING EMBEDDINGS
    GARLING, DJH
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1975, 11 (SEP): : 35 - 45
  • [8] ON THE ASYMPTOTIC-BEHAVIOR OF THE SOLUTIONS OF CERTAIN ORDER-PRESERVING DYNAMICAL-SYSTEMS
    ARINO, O
    BOURAD, F
    HASSANI, N
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1988, 307 (07): : 311 - 315
  • [9] Order-Preserving Incomplete Suffix Trees and Order-Preserving Indexes
    Crochemore, Maxime
    Iliopoulos, Costas S.
    Kociumaka, Tomasz
    Kubica, Marcin
    Langiu, Alessio
    Pissis, Solon P.
    Radoszewski, Jakub
    Rytter, Wojciech
    Walen, Tomasz
    STRING PROCESSING AND INFORMATION RETRIEVAL (SPIRE 2013), 2013, 8214 : 84 - 95
  • [10] On order-preserving representations
    Ben Simon, G.
    Burger, M.
    Hartnick, T.
    Iozzi, A.
    Wienhard, A.
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2016, 94 : 525 - 544