SYNCHRONIZATION BY NOISE FOR ORDER-PRESERVING RANDOM DYNAMICAL SYSTEMS

被引:21
|
作者
Flandoli, Franco [3 ]
Gess, Benjamin [1 ]
Scheutzow, Michael [2 ]
机构
[1] Max Planck Inst Math Sci, Inselstr 22, D-04103 Leipzig, Germany
[2] Tech Univ Berlin, Inst Matemat, MA 7-5, D-10623 Berlin, Germany
[3] Dipartimento Matemat, Largo Bruno Pontecorvo 5, I-56127 Pisa, Italy
来源
ANNALS OF PROBABILITY | 2017年 / 45卷 / 02期
关键词
Synchronization; random dynamical system; random attractor; order-preserving RDS; stochastic differential equation; statistical equilibrium; POROUS-MEDIA EQUATIONS; SMALL RANDOM PERTURBATIONS; DIFFERENTIAL-EQUATIONS; EVOLUTION-EQUATIONS; INVARIANT-MEASURES; RANDOM ATTRACTOR; STABILIZATION; SPACES; CHAOS;
D O I
10.1214/16-AOP1088
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We provide sufficient conditions for weak synchronization/stabilization by noise for order-preserving random dynamical systems on Polish spaces. That is, under these conditions we prove the existence of a weak point attractor consisting of a single random point. This generalizes previous results in two directions: First, we do not restrict to Banach spaces, and second, we do not require the partial order to be admissible nor normal. As a second main result and application, we prove weak synchronization by noise for stochastic porous media equations with additive noise.
引用
收藏
页码:1325 / 1350
页数:26
相关论文
共 50 条
  • [31] On the Distribution of the Number of Occurrences of an Order-Preserving Pattern of Length Three in a Random Permutation
    Fu, James C.
    METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 2012, 14 (03) : 831 - 842
  • [32] On the Distribution of the Number of Occurrences of an Order-Preserving Pattern of Length Three in a Random Permutation
    James C. Fu
    Methodology and Computing in Applied Probability, 2012, 14 : 831 - 842
  • [33] Order-Preserving Wasserstein Discriminant Analysis
    Su, Bing
    Zhou, Jiahuan
    Wu, Ying
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 9884 - 9893
  • [34] ORDER-PRESERVING EXTENSIONS OF LIPSCHITZ MAPS
    Ok, Efe a.
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2025, 118 (01) : 91 - 107
  • [35] Alternative Algorithms for Order-Preserving Matching
    Chhabra, Tamanna
    Kulekci, M. Oguzhan
    Tarhio, Jorma
    PROCEEDINGS OF THE PRAGUE STRINGOLOGY CONFERENCE 2015, 2015, : 36 - 46
  • [36] String Periods in the Order-Preserving Model
    Gourdel, Garance
    Kociumaka, Tomasz
    Radoszewski, Jakub
    Rytter, Wojciech
    Shur, Arseny
    Walen, Tomasz
    35TH SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE (STACS 2018), 2018, 96
  • [37] Endomorphisms of the semigroup of order-preserving mappings
    Fernandes, V. H.
    Jesus, M. M.
    Maltcev, V.
    Mitchell, J. D.
    SEMIGROUP FORUM, 2010, 81 (02) : 277 - 285
  • [38] Order-preserving pattern matching with scaling
    Kim, Youngho
    Kang, Munseong
    Na, Joong Chae
    Sim, Jeong Seop
    INFORMATION PROCESSING LETTERS, 2023, 180
  • [39] On certain order-preserving transformation semigroups
    Zhang, Jia
    Luo, Yanfeng
    COMMUNICATIONS IN ALGEBRA, 2017, 45 (07) : 2980 - 2995
  • [40] Order-Preserving Pattern Matching with Partition
    Na, Joong Chae
    Kim, Youngjoon
    Kang, Seokchul
    Sim, Jeong Seop
    MATHEMATICS, 2024, 12 (21)