A monotone scheme for Hamilton-Jacobi equations via the nonstandard finite difference method

被引:6
|
作者
Anguelov, Roumen [1 ]
Lubuma, Jean M. -S. [1 ]
Minani, Froduald [1 ]
机构
[1] Univ Pretoria, Dept Math & Appl Math, ZA-0002 Pretoria, South Africa
关键词
nonstandard finite difference method; Hamilton-Jacobi equation; monotone scheme; finite element method;
D O I
10.1002/mma.1148
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A usual way of approximating Hamilton-Jacobi equations is to couple space finite element discretization with time finite difference discretization. This classical approach leads to a severe restriction on the time step size for the scheme to be monotone. In this paper, we couple the finite element method with the nonstandard finite difference method, which is based on Mickens' rule of nonlocal approximation. The scheme obtained in this way is unconditionally monotone. The convergence of the new method is discussed and numerical results that support the theory are provided. Copyright (C) 2009 John Wiley & Sons, Ltd.
引用
收藏
页码:41 / 48
页数:8
相关论文
共 50 条
  • [1] A RBFWENO finite difference scheme for Hamilton-Jacobi equations
    Abedian, Rooholah
    Salehi, Rezvan
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2020, 79 (07) : 2002 - 2020
  • [2] Error estimates for a finite difference scheme associated with Hamilton-Jacobi equations on a junction
    Guerand, Jessica
    Koumaiha, Marwa
    NUMERISCHE MATHEMATIK, 2019, 142 (03) : 525 - 575
  • [3] A new fifth order finite difference WENO scheme for Hamilton-Jacobi equations
    Zhu, Jun
    Qiu, Jianxian
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2017, 33 (04) : 1095 - 1113
  • [4] A sixth-order finite difference WENO scheme for Hamilton-Jacobi equations
    Cheng, Xiaohan
    Feng, Jianhu
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2019, 96 (03) : 568 - 584
  • [5] A new fifth order finite difference WENO scheme for Hamilton-Jacobi equations
    College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing
    Jiangsu
    210016, China
    不详
    Fujian
    361005, China
    Numer Methods Partial Differential Equations, 4 (1095-1113):
  • [6] Homogenization of monotone systems of hamilton-jacobi equations
    Dip. di Matematica Pura e Applicata, Univ. dell'Aquila, Loc. Monteluco di Roio, 67040 l'Aquila, Italy
    不详
    不详
    不详
    不详
    Control Optimisation Calc. Var., 1 (58-76):
  • [7] HOMOGENIZATION OF MONOTONE SYSTEMS OF HAMILTON-JACOBI EQUATIONS
    Camilli, Fabio
    Ley, Olivier
    Loreti, Paola
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2010, 16 (01): : 58 - 76
  • [8] Finite difference Hermite WENO schemes for the Hamilton-Jacobi equations
    Zheng, Feng
    Shu, Chi-Wang
    Qiu, Jianxian
    JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 337 : 27 - 41
  • [9] Coupled Scheme for Hamilton-Jacobi Equations
    Sahu, Smita
    THEORY, NUMERICS AND APPLICATIONS OF HYPERBOLIC PROBLEMS II, 2018, 237 : 563 - 576
  • [10] A new finite difference mapped unequal-sized WENO scheme for Hamilton-Jacobi equations
    Li, Liang
    Zhu, Jun
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2022, 119 : 68 - 78