On conformally flat (α,β)-metrics with relatively isotropic mean Landsberg curvature

被引:9
|
作者
Cheng, Xinyue [1 ]
Li, Haixia [1 ]
Zou, Yangyang [1 ,2 ]
机构
[1] Chongqing Univ Technol, Sch Math & Stat, Chongqing 400054, Peoples R China
[2] Southwest Univ, Sch Math & Stat, Chongqing 400715, Peoples R China
来源
PUBLICATIONES MATHEMATICAE-DEBRECEN | 2014年 / 85卷 / 1-2期
基金
中国国家自然科学基金;
关键词
(alpha; beta)-metric; conformally flat Finsler metric; mean Landsberg curvature; weak Landsberg metric; METRICS;
D O I
10.5486/PMD.2014.5863
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study conformally flat (alpha, beta)-metrics in the form of F = alpha phi(beta/alpha), where alpha is a Riemannian metric and beta is a 1-form on the manifold. We prove that conformally flat weak Landsberg (alpha, beta)-metrics must be either Riemannian metrics or locally Minkowski metrics. Further, we prove that, if phi(s) is a polynomial in s, then conformally flat (alpha, beta)-metrics with relatively isotropic mean Landsberg curvature must also be either Riemannian metrics or locally Minkowski metrics.
引用
收藏
页码:131 / 144
页数:14
相关论文
共 50 条