On conformally flat (α,β)-metrics with relatively isotropic mean Landsberg curvature

被引:9
|
作者
Cheng, Xinyue [1 ]
Li, Haixia [1 ]
Zou, Yangyang [1 ,2 ]
机构
[1] Chongqing Univ Technol, Sch Math & Stat, Chongqing 400054, Peoples R China
[2] Southwest Univ, Sch Math & Stat, Chongqing 400715, Peoples R China
来源
PUBLICATIONES MATHEMATICAE-DEBRECEN | 2014年 / 85卷 / 1-2期
基金
中国国家自然科学基金;
关键词
(alpha; beta)-metric; conformally flat Finsler metric; mean Landsberg curvature; weak Landsberg metric; METRICS;
D O I
10.5486/PMD.2014.5863
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study conformally flat (alpha, beta)-metrics in the form of F = alpha phi(beta/alpha), where alpha is a Riemannian metric and beta is a 1-form on the manifold. We prove that conformally flat weak Landsberg (alpha, beta)-metrics must be either Riemannian metrics or locally Minkowski metrics. Further, we prove that, if phi(s) is a polynomial in s, then conformally flat (alpha, beta)-metrics with relatively isotropic mean Landsberg curvature must also be either Riemannian metrics or locally Minkowski metrics.
引用
收藏
页码:131 / 144
页数:14
相关论文
共 50 条
  • [21] Conformal Flat Metrics with Prescribed Mean Curvature on the Boundary
    Khadijah Abdullah Sharaf
    Aymen Bensouf
    Hichem Chtioui
    Abdellahi Soumaré
    Bulletin of the Brazilian Mathematical Society, New Series, 2022, 53 : 379 - 411
  • [22] Conformal Flat Metrics with Prescribed Mean Curvature on the Boundary
    Sharaf, Khadijah Abdullah
    Bensouf, Aymen
    Chtioui, Hichem
    Soumare, Abdellahi
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2022, 53 (02): : 379 - 411
  • [23] Quasi-Conformally Flat Submanifolds with Parallel Mean Curvature Vector
    贺慧霞
    刘芳
    Tsinghua Science and Technology, 2004, (01) : 116 - 120
  • [24] Conformally flat hypersurfaces of E4 with constant mean curvature
    Defever F.
    Results in Mathematics, 2000, 37 (3-4) : 322 - 330
  • [25] Some Hypersurfaces with Constant Mean Curvature in a Conformally Flat Riemannian Manifold
    水乃翔
    欧阳崇珍
    Journal of Mathematical Research with Applications, 1986, (01) : 5 - 10
  • [26] On locally dually flat (α, β)-metrics with isotropic S-curvature
    A. Tayebi
    E. Peyghan
    H. Sadeghi
    Indian Journal of Pure and Applied Mathematics, 2012, 43 : 521 - 534
  • [27] On locally dually flat (α, β)-metrics with isotropic S-curvature
    Tayebi, A.
    Peyghan, E.
    Sadeghi, H.
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2012, 43 (05): : 521 - 534
  • [28] Conformally flat FRW metrics
    Iihoshi, Masao
    Ketov, Sergei V.
    Morishita, Atsushi
    PROGRESS OF THEORETICAL PHYSICS, 2007, 118 (03): : 475 - 489
  • [29] On Conformally Flat Cubic (α, β)-Metrics
    Tayebi, A.
    Razgordani, M.
    Najafi, B.
    VIETNAM JOURNAL OF MATHEMATICS, 2021, 49 (04) : 987 - 1000
  • [30] Compactness for conformal metrics with constant Q curvature on locally conformally flat manifolds
    Jie Qing
    David Raske
    Calculus of Variations and Partial Differential Equations, 2006, 26 : 343 - 356