Smoothed and Corrected Score Approach to Censored Quantile Regression With Measurement Errors

被引:22
|
作者
Wu, Yuanshan [2 ]
Ma, Yanyuan [3 ]
Yin, Guosheng [1 ]
机构
[1] Univ Hong Kong, Dept Stat & Actuarial Sci, Pokfulam Rd, Hong Kong, Hong Kong, Peoples R China
[2] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Hubei, Peoples R China
[3] Univ S Carolina, Dept Stat, Columbia, SC 29208 USA
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
Censored data; Check function; Corrected estimating equation; Kernel smoothing; Measurement error; Regression quantile; Semiparametric method; Survival analysis; LINEAR RANK-TESTS; MEDIAN REGRESSION; SURVIVAL ANALYSIS; ESTIMATOR; MODELS;
D O I
10.1080/01621459.2014.989323
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Censored quantile regression is an important alternative to the Cox proportional hazards model in survival analysis. In contrast to the usual central covariate effects, quantile regression can effectively characterize the covariate effects at different quantiles of the survival time. When covariates are measured with errors, it is known that naively treating mismeasured covariates as error-free would result in estimation bias. Under censored quantile regression, we propose smoothed and corrected estimating equations to obtain consistent estimators. We establish consistency and asymptotic normality for the proposed estimators of quantile regression coefficients. Compared with the naive estimator, the proposed method can eliminate the estimation bias under various measurement error distributions and model error distributions. We conduct simulation studies to examine the finite-sample properties of the new method and apply it to a lung cancer study. Supplementary materials for this article are available online.
引用
收藏
页码:1670 / 1683
页数:14
相关论文
共 50 条
  • [1] CENSORED QUANTILE REGRESSION WITH COVARIATE MEASUREMENT ERRORS
    Ma, Yanyuan
    Yin, Guosheng
    [J]. STATISTICA SINICA, 2011, 21 (02) : 949 - 971
  • [2] Smoothed quantile regression for censored residual life
    Kyu Hyun Kim
    Daniel J. Caplan
    Sangwook Kang
    [J]. Computational Statistics, 2023, 38 : 1001 - 1022
  • [3] Smoothed quantile regression for censored residual life
    Kim, Kyu Hyun
    Caplan, Daniel J.
    Kang, Sangwook
    [J]. COMPUTATIONAL STATISTICS, 2023, 38 (02) : 1001 - 1022
  • [4] Corrected-loss estimation for quantile regression with covariate measurement errors
    Wang, Huixia Judy
    Stefanski, Leonard A.
    Zhu, Zhongyi
    [J]. BIOMETRIKA, 2012, 99 (02) : 405 - 421
  • [5] Bias-corrected quantile regression estimation of censored regression models
    P. Čížek
    S. Sadikoglu
    [J]. Statistical Papers, 2018, 59 : 215 - 247
  • [6] Bias-corrected quantile regression estimation of censored regression models
    Cizek, P.
    Sadikoglu, S.
    [J]. STATISTICAL PAPERS, 2018, 59 (01) : 215 - 247
  • [7] Measurement errors in quantile regression models
    Firpo, Sergio
    Galvao, Antonio F.
    Song, Suyong
    [J]. JOURNAL OF ECONOMETRICS, 2017, 198 (01) : 146 - 164
  • [8] A New Approach to Censored Quantile Regression Estimation
    Yang, Xiaorong
    Narisetty, Naveen Naidu
    He, Xuming
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2018, 27 (02) : 417 - 425
  • [9] SIMEX method for censored quantile regression with measurement error
    Mao, Guangcai
    Wei, Yi
    Liu, Yanyan
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2017, 46 (10) : 7552 - 7560
  • [10] A censored quantile regression approach for relative survival analysis: Relative survival quantile regression
    Williamson, John M.
    Lin, Hung-Mo
    Lyles, Robert H.
    [J]. BIOMETRICAL JOURNAL, 2023, 65 (05)