Model order identification for fractional models

被引:0
|
作者
Victor, Stephane [1 ]
Malti, Rachid [1 ]
机构
[1] Univ Bordeaux, IMS, CNRS, UMR 5218, F-33405 Talence, France
关键词
INSTRUMENTAL VARIABLE METHODS; TIME-SERIES ANALYSIS; STATE;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper deals with continuous-time system identification using fractional differentiation models. So far, no algorithm exists concerning model order identification of fractional models. The "simplified" refined instrumental variable method is proposed to estimate parameters of fractional differential equation models when all the fractional orders are assumed known. Then an optimization approach based on this instrumental variable estimator is presented. This two-stage algorithm, called oosrivcf is then used for model order identification by using simultaneously two criteria: the Young Information Criterion (YIC) and the R-T(2) criterion.
引用
收藏
页码:3470 / 3475
页数:6
相关论文
共 50 条
  • [21] Optimal low order model identification of fractional dynamic systems
    Djamah, T.
    Mansouri, R.
    Djennoune, S.
    Bettayeb, M.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2008, 206 (02) : 543 - 554
  • [22] Identification of the PEA hysteresis property using a fractional order model
    Rebai, Aissa
    Guesmi, Kamel
    Gozim, Djamal
    Hemici, Boualem
    [J]. 201415TH INTERNATIONAL CONFERENCE ON SCIENCES & TECHNIQUES OF AUTOMATIC CONTROL & COMPUTER ENGINEERING (STA'2014), 2014, : 1038 - 1043
  • [23] Using Fractional Order Adjustment Rules and Fractional Order Reference Models in Model-Reference Adaptive Control
    B. M. Vinagre
    I. Petráš
    I. Podlubny
    Y. Q. Chen
    [J]. Nonlinear Dynamics, 2002, 29 : 269 - 279
  • [24] Using fractional order adjustment rules and fractional order reference models in model-reference adaptive control
    Vinagre, BM
    Petrás, I
    Podlubny, I
    Chen, YQ
    [J]. NONLINEAR DYNAMICS, 2002, 29 (1-4) : 269 - 279
  • [25] Identification of fractional order noises
    Sierociuk, Dominik
    Ziubinski, Pawel
    [J]. 2014 19TH INTERNATIONAL CONFERENCE ON METHODS AND MODELS IN AUTOMATION AND ROBOTICS (MMAR), 2014, : 240 - 245
  • [26] Fractional order models of leaves
    Lopes, Antonio M.
    Tenreiro Machado, J. A.
    [J]. JOURNAL OF VIBRATION AND CONTROL, 2014, 20 (07) : 998 - 1008
  • [27] FRACTIONAL ORDER COMPARTMENT MODELS
    Angstmann, Christopher N.
    Erickson, Austen M.
    Henry, Bruce I.
    McGann, Anna V.
    Murray, John M.
    Nichols, James A.
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 2017, 77 (02) : 430 - 446
  • [28] Step Response-Based Identification of Fractional Order Time Delay Models
    Ahmed, Salim
    [J]. CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2020, 39 (08) : 3858 - 3874
  • [29] Step Response-Based Identification of Fractional Order Time Delay Models
    Salim Ahmed
    [J]. Circuits, Systems, and Signal Processing, 2020, 39 : 3858 - 3874
  • [30] Fractional-order Model Identification for Electro-Hydraulic Actuator
    Yusof, Nuzaihan Mhd
    Ishak, Norlela
    Rahiman, Mohd Hezri Fazalul
    Adnan, Ranali
    Tajjudin, Mazidah
    [J]. 2015 10TH ASIAN CONTROL CONFERENCE (ASCC), 2015,