A New Error Analysis of Crank-Nicolson Galerkin FEMs for a Generalized Nonlinear Schrodinger Equation

被引:136
|
作者
Wang, Jilu [1 ]
机构
[1] City Univ Hong Kong, Dept Math, Kowloon, Hong Kong, Peoples R China
关键词
Unconditionally optimal error estimate; Generalized nonlinear Schrodinger equation; Crank-Nicolson Galerkin FEMs; FINITE-ELEMENT-METHOD; DIFFERENCE-SCHEMES; NUMERICAL-SOLUTION; CONVERGENCE;
D O I
10.1007/s10915-013-9799-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study linearized Crank-Nicolson Galerkin FEMs for a generalized nonlinear Schrodinger equation. We present the optimal error estimate without any time-step restrictions, while previous works always require certain conditions on time stepsize. A key to our analysis is an error splitting, in terms of the corresponding time-discrete system, with which the error is split into two parts, the temporal error and the spatial error. Since the spatial error is -independent, the numerical solution can be bounded in -norm by an inverse inequality unconditionally. Then, the optimal error estimate can be obtained by a routine method. To confirm our theoretical analysis, numerical results in both two and three dimensional spaces are presented.
引用
收藏
页码:390 / 407
页数:18
相关论文
共 50 条
  • [31] OPTIMAL ERROR ESTIMATES OF LINEARIZED CRANK-NICOLSON GALERKIN FEMs FOR THE TIME-DEPENDENT GINZBURG-LANDAU EQUATIONS IN SUPERCONDUCTIVITY
    Gao, Huadong
    Li, Buyang
    Sun, Weiwei
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2014, 52 (03) : 1183 - 1202
  • [32] Convergence Analysis of Crank–Nicolson Galerkin–Galerkin FEMs for Miscible Displacement in Porous Media
    Wentao Cai
    Jilu Wang
    Kai Wang
    [J]. Journal of Scientific Computing, 2020, 83
  • [33] CRANK-NICOLSON DIFFERENCE SCHEME FOR THE DERIVATIVE NONLINEAR SCHRODINGER EQUATION WITH THE RIESZ SPACE FRACTIONAL DERIVATIVE
    Guo, Changhong
    Fang, Shaomei
    [J]. JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2021, 11 (03): : 1074 - 1094
  • [34] Nonlinear Galerkin method and Crank-Nicolson method for viscous incompressible flow
    He, YN
    Li, DS
    Li, KT
    [J]. JOURNAL OF COMPUTATIONAL MATHEMATICS, 1999, 17 (02) : 139 - 158
  • [35] Damping of Crank-Nicolson error oscillations
    Britz, D
    Osterby, O
    Strutwolf, J
    [J]. COMPUTATIONAL BIOLOGY AND CHEMISTRY, 2003, 27 (03) : 253 - 263
  • [36] Local Crank-Nicolson Method for Solving the Nonlinear Diffusion Equation
    Abduwali, Abdurishit
    Kohno, Toshiyuki
    Niki, Hiroshi
    [J]. INFORMATION-AN INTERNATIONAL INTERDISCIPLINARY JOURNAL, 2008, 11 (02): : 165 - 169
  • [37] Two-Grid Finite Element Methods of Crank-Nicolson Galerkin Approximation for a Nonlinear Parabolic Equation
    Tan, Zhijun
    Li, Kang
    Chen, Yanping
    [J]. EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2020, 10 (04) : 800 - 817
  • [38] CHAIN MATRICES AND CRANK-NICOLSON EQUATION
    FLATT, HP
    [J]. IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 1965, 9 (03) : 196 - &
  • [39] Crank-Nicolson Fourier spectral methods for the space fractional nonlinear Schrodinger equation and its parameter estimation
    Zhang, Hui
    Jiang, Xiaoyun
    Wang, Chu
    Chen, Shanzhen
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2019, 96 (02) : 238 - 263
  • [40] Crank-Nicolson/finite element approximation for the Schrodinger equation in the de Sitter spacetime
    Selvitopi, Harun
    Zaky, Mahmoud A.
    Hendy, Ahmed S.
    [J]. PHYSICA SCRIPTA, 2021, 96 (12)