Crank-Nicolson Fourier spectral methods for the space fractional nonlinear Schrodinger equation and its parameter estimation

被引:26
|
作者
Zhang, Hui [1 ]
Jiang, Xiaoyun [1 ]
Wang, Chu [2 ]
Chen, Shanzhen [3 ]
机构
[1] Shandong Univ, Sch Math, Jinan 250100, Shandong, Peoples R China
[2] Nokia Bell Labs, Murray Hill, NJ USA
[3] Southwestern Univ Finance & Econ, Sch Econ Math, Chengdu, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
Space fractional nonlinear Schrodinger equation; Crank-Nicolson Fourier spectral methods; convergence; mass and energy conservation; parameter estimation; Bayesian method; APPROXIMATION; DYNAMICS; CALCULUS;
D O I
10.1080/00207160.2018.1434515
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the Crank-Nicolson Fourier spectral approximations for solving the space fractional nonlinear Schrodinger equation are proposed. Firstly, the numerical formats of the Crank-Nicolson Fourier Galerkin and Fourier collocation methods are established. The fast Fourier transform technique is applied to practical computation. Secondly, Convergence with spectral accuracy in space and second-order accuracy in time is verified for both Galerkin and collocation approximations. Moreover, a rigorous analysis of the conservation for the Crank-Nicolson Fourier Galerkin fully discrete system is derived. Thirdly, the Bayesian method is presented to estimate the fractional derivative order and the coefficient of nonlinear term based on the spectral format of the direct problem. Finally, some numerical examples are given to confirm the theoretical analysis.
引用
收藏
页码:238 / 263
页数:26
相关论文
共 50 条
  • [1] A Conservative Crank-Nicolson Fourier Spectral Method for the Space Fractional Schrodinger Equation with Wave Operators
    Zhang, Lei
    Yang, Rui
    Zhang, Li
    Wang, Lisha
    [J]. JOURNAL OF FUNCTION SPACES, 2021, 2021
  • [2] CRANK-NICOLSON DIFFERENCE SCHEME FOR THE DERIVATIVE NONLINEAR SCHRODINGER EQUATION WITH THE RIESZ SPACE FRACTIONAL DERIVATIVE
    Guo, Changhong
    Fang, Shaomei
    [J]. JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2021, 11 (03): : 1074 - 1094
  • [3] Multisymplecticity of Crank-Nicolson scheme for the nonlinear Schrodinger equation
    Chen, JB
    [J]. JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2002, 71 (09) : 2348 - 2349
  • [4] Derivation of the multisymplectic Crank-Nicolson scheme for the nonlinear Schrodinger equation
    Cai, Wenjun
    Wang, Yushun
    Song, Yongzhong
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 2014, 185 (10) : 2403 - 2411
  • [5] A Newton Linearized Crank-Nicolson Method for the Nonlinear Space Fractional Sobolev Equation
    Qin, Yifan
    Yang, Xiaocheng
    Ren, Yunzhu
    Xu, Yinghong
    Niazi, Wahidullah
    [J]. JOURNAL OF FUNCTION SPACES, 2021, 2021
  • [6] Linearized Crank-Nicolson scheme for the nonlinear time-space fractional Schrodinger equations
    Ran, Maohua
    Zhang, Chengjian
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2019, 355 : 218 - 231
  • [7] Crank-Nicolson Scheme for Solving the Modified Nonlinear Schrodinger Equation
    Alanazi, A. A.
    Alamri, Sultan Z.
    Shafie, S.
    Puzi, Shazirawati Mohd
    [J]. INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 2021, 31 (08) : 2789 - 2817
  • [8] Crank-Nicolson difference scheme for the coupled nonlinear Schrodinger equations with the Riesz space fractional derivative
    Wang, Dongling
    Xiao, Aiguo
    Yang, Wei
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 242 : 670 - 681
  • [9] Crank-Nicolson Implicit Method For The Nonlinear Schrodinger Equation With Variable Coefficient
    Choy, Yaan Yee
    Tan, Wool Nee
    Tay, Kim Gaik
    Ong, Chee Tong
    [J]. PROCEEDINGS OF THE 21ST NATIONAL SYMPOSIUM ON MATHEMATICAL SCIENCES (SKSM21): GERMINATION OF MATHEMATICAL SCIENCES EDUCATION AND RESEARCH TOWARDS GLOBAL SUSTAINABILITY, 2014, 1605 : 76 - 82
  • [10] CRANK-NICOLSON LEGENDRE SPECTRAL APPROXIMATION FOR SPACE-FRACTIONAL ALLEN-CAHN EQUATION
    Chen, Wenping
    Lu, Shujuan
    Chen, Hu
    Liu, Haiyu
    [J]. ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2019,