Highly Efficient Hydrogenation of Levulinic Acid into γ-Valerolactone using an Iron Pincer Complex

被引:39
|
作者
Yi, Yuxuan [1 ]
Liu, Huiying [1 ]
Xiao, Ling-Ping [1 ]
Wang, Bo [1 ]
Song, Guoyong [1 ]
机构
[1] Beijing Forestry Univ, Beijing Key Lab Lignocellulos Chem, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
hydrogenation; iron; levulinic acid; pincer; gamma-valerolactone; METAL-LIGAND COOPERATION; CATALYTIC CONVERSION; MILD CONDITIONS; ACCEPTORLESS DEHYDROGENATION; CARBOHYDRATE BIOMASS; ETHYL LEVULINATE; ALCOHOLS; TRANSFORMATION; CHEMISTRY; MECHANISM;
D O I
10.1002/cssc.201800435
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The search for nonprecious-metal-based catalysts for the synthesis of gamma-valerolactone (GVL) through hydrogenation of levulinic acid and its derivatives in an efficient fashion is of great interest and importance, as GVL is an important a sustainable liquid. We herein report a pincer iron complex that can efficiently catalyze the hydrogenation of levulinic acid and methyl levulinate into GVL, achieving a turnover number of up to 23000 and a turnover frequency of 1917 h(-1). This iron-based catalyst also enabled the formation of GVL from various biomass-derived carbohydrates in aqueous solution, thus paving a new way toward a renewable chemical industry.
引用
收藏
页码:1474 / 1478
页数:5
相关论文
共 50 条
  • [41] Selective hydrogenation of levulinic acid to γ-valerolactone on Ni-based catalysts
    Bai, Jing
    Cheng, Canwei
    Liu, Yong
    Wang, Chenguang
    Liao, Yuhe
    Chen, Lungang
    Ma, Longlong
    [J]. MOLECULAR CATALYSIS, 2021, 516
  • [42] Synthesis of γ-valerolactone by hydrogenation of levulinic acid over supported nickel catalysts
    Hengst, Konstantin
    Schubert, Martin
    Carvalho, Hudson W. P.
    Lu, Changbo
    Kleist, Wolfgang
    Grunwaldt, Jan-Dierk
    [J]. APPLIED CATALYSIS A-GENERAL, 2015, 502 : 18 - 26
  • [43] Hydrogenation of levulinic acid to y-valerolactone using a homogeneous titanium catalyst at mild conditions
    Roa, Diego A.
    Garcia, Juventino J.
    [J]. JOURNAL OF CATALYSIS, 2022, 413 : 1028 - 1033
  • [44] Insights into the selective hydrogenation of levulinic acid to γ-valerolactone using supported mono- and bimetallic catalysts
    Al-Naji, Majd
    Yepez, Alfonso
    Balu, Alina M.
    Romero, Antonio A.
    Chen, Zhihao
    Wilde, Nicole
    Li, Hangkong
    Shih, Kaimin
    Glaeser, Roger
    Luqueb, Rafael
    [J]. JOURNAL OF MOLECULAR CATALYSIS A-CHEMICAL, 2016, 417 : 145 - 152
  • [45] Highly efficient, general hydrogenation of aldehydes catalyzed by PNP iron pincer complexes
    Zell, Thomas
    Ben-David, Yehoshoa
    Milstein, David
    [J]. CATALYSIS SCIENCE & TECHNOLOGY, 2015, 5 (02) : 822 - 826
  • [46] Catalytic hydrogenation of levulinic acid for the preparation of γ-valerolactone using CuAgZrO2-graphene nanocomposites
    Jia, Yufeng
    Lv, Hui
    Mao, Jingbo
    Zhou, Jinxia
    [J]. NEW JOURNAL OF CHEMISTRY, 2024, 48 (17) : 7810 - 7819
  • [47] Kinetic modeling of levulinic acid hydrogenation to γ-valerolactone in water using a carbon supported Ru catalyst
    Piskun, A. S.
    van de Bovenkamp, H. H.
    Rasrendra, C. B.
    Winkelman, J. G. M.
    Heeres, H. J.
    [J]. APPLIED CATALYSIS A-GENERAL, 2016, 525 : 158 - 167
  • [48] Highly efficient transformation of levulinic acid into pyrrolidinones by iridium catalysed transfer hydrogenation
    Wei, Yawen
    Wang, Chao
    Jiang, Xue
    Xue, Dong
    Li, Jia
    Xiao, Jianliang
    [J]. CHEMICAL COMMUNICATIONS, 2013, 49 (47) : 5408 - 5410
  • [49] Heterogeneous Catalytic Hydrogenation of Levulinic Acid to γ-Valerolactone with Formic Acid as Internal Hydrogen Source
    Yu, Zhihao
    Lu, Xuebin
    Xiong, Jian
    Li, Xiaoyun
    Bai, Hui
    Ji, Na
    [J]. CHEMSUSCHEM, 2020, 13 (11) : 2916 - 2930
  • [50] Efficient and Sustainable Hydrogenation of Levulinic Acid to γ-Valerolactone in Aqueous Phase over Ru/MCM-49 Catalysts
    Li, Wenlin
    Li, Feng
    Chen, Junwen
    Betancourt, Luis E.
    Tu, Chunyan
    Liao, Mingjie
    Ning, Xing
    Zheng, Jiajun
    Li, Ruifeng
    [J]. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2020, 59 (39) : 17338 - 17347