A new boson approach for the wobbling motion in even-odd nuclei

被引:6
|
作者
Raduta, A. A. [1 ,2 ]
Raduta, C. M. [1 ]
Poenaru, R. [1 ,3 ]
机构
[1] Horia Hulubei Natl Inst Phys & Nucl Engn, Dept Theoret Phys, POB MG6, Bucharest, Romania
[2] Acad Romanian Scientists, 54 Splaiul Independentei, Bucharest 050094, Romania
[3] Bucharest Univ, Doctoral Sch Phys, 405 Atomistilor Str, Bucharest, Romania
关键词
boson expansion; triaxial rotor; wobbling motion; phase diagram; potential energy; contour plot; transition probability; ASYMMETRIC ROTOR MODEL; PARITY STATES; PHONON EXCITATIONS; SYMMETRY; ROTATION; BANDS;
D O I
10.1088/1361-6471/abc533
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
A triaxial core rotating around the middle axis, i.e. two-axis, is cranked around the one-axis, due to the coupling of an odd proton from a high j orbital. Using the Bargmann representation of a new and complex boson expansion of the angular momentum components, the eigenvalue equation of the model Hamiltonian acquires a Schrodinger form with a fully separated kinetic energy. From a critical angular momentum, the potential energy term exhibits three minima, two of them being degenerate. Spectra of the deepest wells reflects a chiral-like structure. Energies corresponding to the deepest and local minima respectively, are analytically expressed within a harmonic approximation. Based on a classical analysis, a phase diagram is constructed. It is also shown that the transverse wobbling mode is unstable. The wobbling frequencies corresponding to the deepest minimum are used to quantitatively describe the wobbling properties in Pr-135. Both energies and e.m. transition probabilities are described.
引用
收藏
页数:29
相关论文
共 50 条
  • [41] Deformed boson scheme stressing even-odd boson number difference.: III -: Parameter-dependent deformation
    Kuriyama, A
    Providência, C
    da Providência, J
    Tsue, Y
    Yamamura, M
    [J]. PROGRESS OF THEORETICAL PHYSICS, 2004, 111 (04): : 509 - 523
  • [42] EVEN-ODD EFFECTS IN THE CHARGE-DISTRIBUTIONS OF THE PRODUCTS OF COLD FRAGMENTATION OF ACTINIDE NUCLEI
    KOLDOBSKII, AB
    SIROTKIN, VK
    [J]. SOVIET JOURNAL OF NUCLEAR PHYSICS-USSR, 1988, 47 (06): : 999 - 1000
  • [43] TOWARD A MICROSCOPIC DESCRIPTION OF THE M1 STATES IN DEFORMED EVEN-ODD NUCLEI
    RADUTA, AA
    IUDICE, NL
    [J]. ZEITSCHRIFT FUR PHYSIK A-HADRONS AND NUCLEI, 1989, 334 (04): : 403 - 414
  • [45] A new interpretation for the even-odd effect in fission-fragments yields
    Farget, F
    Ignatyuk, AV
    Junghans, AR
    Schmidt, KH
    [J]. EXPERIMENTAL NUCLEAR PHYSICS IN EUROPE: ENPE 99: FACING THE NEXT MILLENNIUM, 1999, 495 : 343 - 344
  • [46] Statistical approaches to the even-odd effect in fission
    Schmidt, KH
    Ignayuk, AV
    Rejmund, F
    Kelic, A
    Ricciardi, MV
    [J]. Nuclear Fission and Fission-Product Spectroscopy, 2005, 798 : 239 - 246
  • [47] Even-odd correlation functions on an optical lattice
    Kapit, Eliot
    Mueller, Erich
    [J]. PHYSICAL REVIEW A, 2010, 82 (01):
  • [48] A Multiset Version of Even-Odd Permutations Identity
    Faal, Hossein Teimoori
    [J]. INTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER SCIENCE, 2019, 30 (05) : 683 - 691
  • [49] Cycles on a multiset with only even-odd drops
    Lin, Zhicong
    Yan, Sherry H. F.
    [J]. DISCRETE MATHEMATICS, 2022, 345 (02)
  • [50] Even-odd parity effects in Majorana junctions
    Zazunov, Alex
    Sodano, Pasquale
    Egger, Reinhold
    [J]. NEW JOURNAL OF PHYSICS, 2013, 15