A new boson approach for the wobbling motion in even-odd nuclei

被引:6
|
作者
Raduta, A. A. [1 ,2 ]
Raduta, C. M. [1 ]
Poenaru, R. [1 ,3 ]
机构
[1] Horia Hulubei Natl Inst Phys & Nucl Engn, Dept Theoret Phys, POB MG6, Bucharest, Romania
[2] Acad Romanian Scientists, 54 Splaiul Independentei, Bucharest 050094, Romania
[3] Bucharest Univ, Doctoral Sch Phys, 405 Atomistilor Str, Bucharest, Romania
关键词
boson expansion; triaxial rotor; wobbling motion; phase diagram; potential energy; contour plot; transition probability; ASYMMETRIC ROTOR MODEL; PARITY STATES; PHONON EXCITATIONS; SYMMETRY; ROTATION; BANDS;
D O I
10.1088/1361-6471/abc533
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
A triaxial core rotating around the middle axis, i.e. two-axis, is cranked around the one-axis, due to the coupling of an odd proton from a high j orbital. Using the Bargmann representation of a new and complex boson expansion of the angular momentum components, the eigenvalue equation of the model Hamiltonian acquires a Schrodinger form with a fully separated kinetic energy. From a critical angular momentum, the potential energy term exhibits three minima, two of them being degenerate. Spectra of the deepest wells reflects a chiral-like structure. Energies corresponding to the deepest and local minima respectively, are analytically expressed within a harmonic approximation. Based on a classical analysis, a phase diagram is constructed. It is also shown that the transverse wobbling mode is unstable. The wobbling frequencies corresponding to the deepest minimum are used to quantitatively describe the wobbling properties in Pr-135. Both energies and e.m. transition probabilities are described.
引用
收藏
页数:29
相关论文
共 50 条
  • [31] STRUCTURE OF EVEN-EVEN AND EVEN-ODD XE NUCLIDES
    MANTICA, PF
    CARTER, HK
    ZIMMERMAN, BE
    WALTERS, WB
    RIKOVSKA, J
    STONE, NJ
    RUPNIK, D
    ZGANJAR, EF
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1991, 201 : 41 - NUCL
  • [32] EVEN-ODD ANOMALOUS TUNNELING EFFECT
    KAMINSKI, P
    DROZDZ, S
    PLOSZAJCZAK, M
    CAURIER, E
    [J]. PHYSICAL REVIEW C, 1993, 47 (04): : 1548 - 1552
  • [33] EVEN-ODD RATIO IN MULTIPION ANNIHILATIONS
    VANDERMEULEN, J
    [J]. LETTERE AL NUOVO CIMENTO, 1977, 18 (03): : 70 - 72
  • [34] Even-odd analysis on a complex shoreline
    Walton, TL
    [J]. OCEAN ENGINEERING, 2002, 29 (06) : 711 - 719
  • [35] EVEN-ODD EFFECTS IN PRECOMPOUND EMISSION
    LEE, EV
    GRIFFIN, JJ
    [J]. PHYSICAL REVIEW C, 1972, 5 (05): : 1713 - +
  • [36] Even-odd staggering of the spectroscopic factor as new evidence for α clustering
    Delion, D. S.
    Dumitrescu, A.
    Baran, V. V.
    [J]. PHYSICAL REVIEW C, 2016, 93 (04)
  • [37] Even-odd carbon atom disparity
    Sarma, JARP
    Nangia, A
    Desiraju, GR
    Zass, E
    Dunitz, JD
    [J]. NATURE, 1996, 384 (6607) : 320 - 320
  • [38] Theoretical studies on the fine structure of decay for even-odd and even-even isotopes of Cm, Cf, Fm and No nuclei
    Bai, G. M. Carmel Viola
    Agnes, R. Nithya
    [J]. PRAMANA-JOURNAL OF PHYSICS, 2019, 93 (03):
  • [39] A microscopic multiphonon approach to even and odd nuclei
    De Gregorio, G.
    Knapp, F.
    Lo Iudice, N.
    Vesely, P.
    [J]. PHYSICA SCRIPTA, 2017, 92 (07)
  • [40] DIFFERENCE OF CURVE OF GROWTH FOR EVEN-ODD AND ODD-EVEN FEI TRANSITIONS
    KULIZADE, DM
    GUSEINOV, KI
    VELIEV, SM
    [J]. ASTRONOMICHESKII ZHURNAL, 1976, 53 (03): : 577 - 588