Connections and geodesics in the space of metrics

被引:32
|
作者
Demmel, Maximilian [1 ,2 ]
Nink, Andreas [1 ]
机构
[1] Johannes Gutenberg Univ Mainz, Inst Phys, PRISMA Cluster Excellence, D-55099 Mainz, Germany
[2] Radboud Univ Nijmegen, Inst Math Astrophys & Particle Phys, NL-6525 AJ Nijmegen, Netherlands
来源
PHYSICAL REVIEW D | 2015年 / 92卷 / 10期
关键词
RENORMALIZATION-GROUP; QUANTUM-GRAVITY; EVOLUTION EQUATION; SCALING EXPONENTS; INVARIANCE; MANIFOLD; MODELS;
D O I
10.1103/PhysRevD.92.104013
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We argue that the exponential relation g(mu nu) = (g) over bar mu rho(e(h))(nu)(rho) is the most natural metric parametrization since it describes geodesics that follow from the basic structure of the space of metrics. The corresponding connection is derived, and its relation to the Levi-Civita connection and the Vilkovisky-DeWitt connection is discussed. We address the impact of this geometric formalism on quantum gravity applications. In particular, the exponential parametrization is appropriate for constructing covariant quantities like a reparametrization-invariant effective action in a straightforward way. Furthermore, we reveal an important difference between Euclidean and Lorentzian signatures: Based on the derived connection, any two Euclidean metrics can be connected by a geodesic, while this does not hold for the Lorentzian case.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] On Quarter Symmetric Connections Preserving Geodesics
    Di Zhao
    Talyun Ho
    Kumhyok Kwak
    CholYong Jon
    Bulletin of the Malaysian Mathematical Sciences Society, 2022, 45 : 3255 - 3276
  • [42] The geodesics of metric connections with vectorial torsion
    Agricola, I
    Thier, C
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2004, 26 (04) : 321 - 332
  • [43] On Quarter Symmetric Connections Preserving Geodesics
    Zhao, Di
    Ho, Talyun
    Kwak, Kumhyok
    Jon, CholYong
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2022, 45 (06) : 3255 - 3276
  • [44] CONNECTIONS AND GEODESICS IN THE SPACETIME TANGENT BUNDLE
    BRANDT, HE
    FOUNDATIONS OF PHYSICS, 1991, 21 (11) : 1285 - 1295
  • [45] On Limit Sets for Geodesics of Meromorphic Connections
    Dmitry Novikov
    Boris Shapiro
    Guillaume Tahar
    Journal of Dynamical and Control Systems, 2023, 29 : 55 - 70
  • [46] Geodesics in Jet Space
    Bravo-Doddoli, Alejandro
    Montgomery, Richard
    REGULAR & CHAOTIC DYNAMICS, 2022, 27 (02): : 151 - 182
  • [47] Geodesics in the TPS Space
    Varano, Valerio
    Gabriele, Stefano
    Milicchio, Franco
    Shlager, Stefan
    Dryden, Ian
    Piras, Paolo
    MATHEMATICS, 2022, 10 (09)
  • [48] Geodesics in Jet Space
    Alejandro Bravo-Doddoli
    Richard Montgomery
    Regular and Chaotic Dynamics, 2022, 27 : 151 - 182
  • [49] The space of null geodesics
    Low, RJ
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 47 (05) : 3005 - 3017
  • [50] Closed manifolds admitting metrics with the same geodesics
    Matveev, VS
    SPT 2004: SYMMETRY AND PERTURBATION THEORY, 2005, : 198 - 208