The geodesics of metric connections with vectorial torsion

被引:14
|
作者
Agricola, I [1 ]
Thier, C [1 ]
机构
[1] Humboldt Univ, Inst Math, D-10099 Berlin, Germany
关键词
metric connections; vectorial torsion; geodesics; loxodromes; geodesic mappings; Mercator projection;
D O I
10.1023/B:AGAG.0000047509.63818.4f
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The present note deals with the dynamics of metric connections with vectorial torsion, as already described by E. Cartan in 1925. We show that the geodesics of metric connections with vectorial torsion defined by gradient vector fields coincide with the Levi-Civita geodesics of a conformally equivalent metric. By pullback, this yields a systematic way of constructing invariants of motion for such connections from isometries of the conformally equivalent metric, and we explain in as much this result generalizes the Mercator projection which maps sphere loxodromes to straight lines in the plane. An example shows that Beltrami's theorem fails for this class of connections. We then study the system of differential equations describing geodesics in the plane for vector fields which are not gradients, and show among others that the Hopf-Rinow theorem does also not hold in general.
引用
收藏
页码:321 / 332
页数:12
相关论文
共 50 条