Algorithms for optimal area triangulations of a convex polygon

被引:12
|
作者
Keil, J. Mark
Vassilev, Tzvetalin S.
机构
[1] Univ Saskatchewan, Dept Comp Sci, Saskatoon, SK S7N 5C9, Canada
[2] N Carolina Cent Univ, Dept Math & Comp Sci, Durham, NC 27707 USA
来源
基金
加拿大自然科学与工程研究理事会;
关键词
triangulations; convex polygons; dynamic programming;
D O I
10.1016/j.comgeo.2006.03.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given a convex polygon with n vertices in the plane, we are interested in triangulations of its interior, i.e., maximal sets of nonintersecting diagonals that subdivide the interior of the polygon into triangles. The MaxMin area triangulation is the triangulation of the polygon that maximizes the area of the smallest triangle in the triangulation. Similarly, the MinMax area triangulation is the triangulation that minimizes the area of the largest area triangle in the triangulation. We present algorithms that construct MaxMin and MinMax area triangulations of a convex polygon in O(n(2) log n) time and O(n(2)) space. The algorithms use dynamic programming and a number of geometric properties that are established within the paper. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:173 / 187
页数:15
相关论文
共 50 条
  • [41] Equal-area locus-based convex polygon decomposition
    Adjiashvili, D.
    Peleg, D.
    THEORETICAL COMPUTER SCIENCE, 2010, 411 (14-15) : 1648 - 1667
  • [42] Equal-area locus-based convex polygon decomposition
    Adjiashvili, David
    Peleg, David
    STRUCTURAL INFORMATION AND COMMUNICATION COMPLEXITY, 2008, 5058 : 141 - 155
  • [43] DECOMPOSITION OF A CONVEX POLYGON INTO CONVEX POLYGONS
    BLIND, G
    DISCRETE MATHEMATICS, 1979, 26 (01) : 1 - 15
  • [44] CIRCLES FOR A CONVEX POLYGON
    STRAUSS, EG
    BONDESEN, A
    VOJTA, PA
    AMERICAN MATHEMATICAL MONTHLY, 1980, 87 (01): : 64 - 64
  • [45] OPTIMAL PARALLEL ALGORITHMS FOR POINT-SET AND POLYGON PROBLEMS
    COLE, R
    GOODRICH, MT
    ALGORITHMICA, 1992, 7 (01) : 3 - 23
  • [46] Inscribing an axially symmetric polygon and other approximation algorithms for planar convex sets
    Ahn, HK
    Brass, P
    Cheong, O
    Na, HS
    Shin, CS
    Vigneron, A
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2006, 33 (03): : 152 - 164
  • [47] Longest-edge algorithms for size-optimal refinement of triangulations
    Bedregal, Carlos
    Rivara, Maria-Cecilia
    COMPUTER-AIDED DESIGN, 2014, 46 : 246 - 251
  • [48] Convex Polygons in Geometric Triangulations
    Dumitrescu, Adrian
    Toth, Csaba D.
    COMBINATORICS PROBABILITY & COMPUTING, 2017, 26 (05): : 641 - 659
  • [49] OPTIMAL ALGORITHMS FOR DETERMINING THE MOVABILITY OF CONVEX POLYGONS
    李辉
    Science China Mathematics, 1988, (05) : 611 - 620
  • [50] Acute triangulations of convex quadrilaterals
    Cavicchioli, Maddalena
    DISCRETE APPLIED MATHEMATICS, 2012, 160 (7-8) : 1253 - 1256