Algorithms for optimal area triangulations of a convex polygon

被引:12
|
作者
Keil, J. Mark
Vassilev, Tzvetalin S.
机构
[1] Univ Saskatchewan, Dept Comp Sci, Saskatoon, SK S7N 5C9, Canada
[2] N Carolina Cent Univ, Dept Math & Comp Sci, Durham, NC 27707 USA
来源
基金
加拿大自然科学与工程研究理事会;
关键词
triangulations; convex polygons; dynamic programming;
D O I
10.1016/j.comgeo.2006.03.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given a convex polygon with n vertices in the plane, we are interested in triangulations of its interior, i.e., maximal sets of nonintersecting diagonals that subdivide the interior of the polygon into triangles. The MaxMin area triangulation is the triangulation of the polygon that maximizes the area of the smallest triangle in the triangulation. Similarly, the MinMax area triangulation is the triangulation that minimizes the area of the largest area triangle in the triangulation. We present algorithms that construct MaxMin and MinMax area triangulations of a convex polygon in O(n(2) log n) time and O(n(2)) space. The algorithms use dynamic programming and a number of geometric properties that are established within the paper. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:173 / 187
页数:15
相关论文
共 50 条
  • [21] SELECTING THE KTH LARGEST-AREA CONVEX POLYGON
    SALOWE, JS
    LECTURE NOTES IN COMPUTER SCIENCE, 1989, 382 : 243 - 250
  • [22] Signed flips and triangulations of a polygon
    Gravier, S
    Payan, C
    EUROPEAN JOURNAL OF COMBINATORICS, 2002, 23 (07) : 817 - 821
  • [23] Optimal BSR solutions to several convex polygon problems
    Myoupo, JF
    Semé, D
    Stojmenovic, I
    JOURNAL OF SUPERCOMPUTING, 2002, 21 (01): : 77 - 90
  • [24] Maximum-area triangle in a convex polygon, revisited
    van der Hoog, Ivor
    Keikha, Vahideh
    Loffler, Maarten
    Mohades, Ali
    Urhausen, Jerome
    INFORMATION PROCESSING LETTERS, 2020, 161
  • [25] Optimal BSR Solutions to Several Convex Polygon Problems
    Jean-Frédéric Myoupo
    David Semé
    Ivan Stojmenovic
    The Journal of Supercomputing, 2002, 21 : 77 - 90
  • [26] OPTIMAL PARALLEL HYPERCUBE ALGORITHMS FOR POLYGON PROBLEMS
    ATALLAH, MJ
    CHEN, DZ
    IEEE TRANSACTIONS ON COMPUTERS, 1995, 44 (07) : 914 - 922
  • [27] Optimal parallel hypercube algorithms for polygon problems
    Atallah, Mikhail J., 1600, IEEE, Los Alamitos, CA, United States (44):
  • [28] Efficient algorithms for two-center problems for a convex polygon
    Kim, SK
    Shin, CS
    COMPUTING AND COMBINATORICS, PROCEEDINGS, 2000, 1858 : 299 - 309
  • [29] EXACT SOLUTION OF THE CONVEX POLYGON PERIMETER AND AREA GENERATING FUNCTION
    LIN, KY
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1991, 24 (10): : 2411 - 2417
  • [30] Revisit of Minimum-area Enclosing Rectangle of a Convex Polygon
    Lin, Yin-Ting
    Liu, Jing-Sin
    2018 5TH INTERNATIONAL CONFERENCE ON CONTROL, DECISION AND INFORMATION TECHNOLOGIES (CODIT), 2018, : 1051 - 1056