Algorithms for optimal area triangulations of a convex polygon

被引:12
|
作者
Keil, J. Mark
Vassilev, Tzvetalin S.
机构
[1] Univ Saskatchewan, Dept Comp Sci, Saskatoon, SK S7N 5C9, Canada
[2] N Carolina Cent Univ, Dept Math & Comp Sci, Durham, NC 27707 USA
来源
基金
加拿大自然科学与工程研究理事会;
关键词
triangulations; convex polygons; dynamic programming;
D O I
10.1016/j.comgeo.2006.03.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given a convex polygon with n vertices in the plane, we are interested in triangulations of its interior, i.e., maximal sets of nonintersecting diagonals that subdivide the interior of the polygon into triangles. The MaxMin area triangulation is the triangulation of the polygon that maximizes the area of the smallest triangle in the triangulation. Similarly, the MinMax area triangulation is the triangulation that minimizes the area of the largest area triangle in the triangulation. We present algorithms that construct MaxMin and MinMax area triangulations of a convex polygon in O(n(2) log n) time and O(n(2)) space. The algorithms use dynamic programming and a number of geometric properties that are established within the paper. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:173 / 187
页数:15
相关论文
共 50 条
  • [1] Graph of triangulations of a convex polygon and tree of triangulations
    Hurtado, F
    Noy, M
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 1999, 13 (03): : 179 - 188
  • [2] Graph of triangulations of a convex polygon and tree of triangulations
    Dept. de Matemàt. Aplicada II, Univ. Politecnica de Catalunya, Pau Gargallo 5, 08028-Barcelona, Spain
    Comput Geom Theory Appl, 3 (179-188):
  • [3] Decomposition of Catalan numbers and convex polygon triangulations
    Stanimirovic, Predrag S.
    Krtolica, Predrag V.
    Saracevic, Muzafer H.
    Masovic, Sead H.
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2014, 91 (06) : 1315 - 1328
  • [4] GEOMETRIC CLASSIFICATION OF TRIANGULATIONS AND THEIR ENUMERATION IN A CONVEX POLYGON
    SENGUPTA, S
    MUKHOPADHYAYA, K
    BHATTACHARYA, BB
    SINHA, BP
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1994, 27 (07) : 99 - 115
  • [5] AREA OF A CONVEX POLYGON
    MURTY, MR
    MURTY, VK
    AMERICAN MATHEMATICAL MONTHLY, 1976, 83 (03): : 200 - 200
  • [6] COMPUTING TRIANGULATIONS OF THE CONVEX POLYGON IN PHP/MYSQL ENVIRONMENT
    Masovic, Sead H.
    Saracevic, Muzafer H.
    Stanimirovic, Predrag S.
    Krtolica, Predrag V.
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2019, 34 (01): : 137 - 147
  • [7] On the area of the polygon determined by the short diagonals of a convex polygon
    Cho, J.
    Ismailescu, D.
    Kim, Y.
    Lee, A. W.
    ACTA MATHEMATICA HUNGARICA, 2020, 160 (01) : 72 - 87
  • [8] Algorithms for the decomposition of a polygon into convex polygons
    Fernández, J
    Cánovas, L
    Pelegrín, B
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2000, 121 (02) : 330 - 342
  • [9] On the area of the polygon determined by the short diagonals of a convex polygon
    J. Cho
    D. Ismailescu
    Y. Kim
    A. W. Lee
    Acta Mathematica Hungarica, 2020, 160 : 72 - 87
  • [10] Blockers for Triangulations of a Convex Polygon and a Geometric Maker-Breaker Game
    Keller, Chaya
    Stein, Yael
    ELECTRONIC JOURNAL OF COMBINATORICS, 2020, 27 (04): : 1 - 16