Duality between matrix variate t and matrix variate VG distributions

被引:3
|
作者
Haffar, Solomon W. [1 ]
Seneta, Eugene
Gupta, Arjun K.
机构
[1] Bowling Green State Univ, Dept Math & Stat, Bowling Green, OH 43403 USA
[2] Univ Sydney, Sch Math & Stat, Sydney, NSW 2006, Australia
[3] S Dakota State Univ, Dept Math & Stat, Brookings, SD 57007 USA
关键词
characteristic function; inversion theorem; inverted Wishart; log return; matrix generalized inverse Gaussian; matrix variate distributions; Wishart; variance-gamma;
D O I
10.1016/j.jmva.2005.09.002
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The (univariate) t-distribution and symmetric VG. distribution are competing models [D.S. Madan, E. Seneta, The variance gamma (V.G.) model for share market returns, J. Business 63 (1990) 511-524; T.W. Epps, Pricing Derivative Securities, World Scientific, Singapore, 2000 (Section 9.4)] for the distribution of log-increments of the price of a financial asset. Both result from scale-mixing of the normal distribution. The analogous matrix variate distributions and their characteristic functions are derived in the sequel and are dual to each other in the sense of a simple Duality Theorem. This theorem can thus be used to yield the derivation of the characteristic function of the t-distribution and is the essence of the idea used by Dreier and Kotz [A note on the characteristic function of the t-distribution, Statist. Probab. Lett. 57 (2002) 221-224]. The present paper generalizes the univariate ideas in Section 6 of Seneta [Fitting the variance-gamma (VG) model to financial data, stochastic methods and their applications, Papers in Honour of Chris Heyde, Applied Probability Trust, Sheffield, J. Appl. Probab. (Special Volume) 41A (2004) 177-187] to the general matrix generalized inverse gaussian (MGIG) distribution. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:1467 / 1475
页数:9
相关论文
共 50 条
  • [21] Mixtures of Matrix-Variate Contaminated Normal Distributions
    Tomarchio, Salvatore D.
    Gallaugher, Michael P. B.
    Punzo, Antonio
    McNicholas, Paul D.
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2022, 31 (02) : 413 - 421
  • [22] Classification With the Matrix-Variate-t Distribution
    Thompson, Geoffrey Z.
    Maitra, Ranjan
    Meeker, William Q.
    Bastawros, Ashraf F.
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2020, 29 (03) : 668 - 674
  • [23] A Matrix-Variate t Model for Networks
    Billio, Monica
    Casarin, Roberto
    Costola, Michele
    Iacopini, Matteo
    [J]. FRONTIERS IN ARTIFICIAL INTELLIGENCE, 2021, 4
  • [24] A matrix variate skew-t distribution
    Gallaugher, Michael P. B.
    McNicholas, Paul D.
    [J]. STAT, 2017, 6 (01): : 160 - 170
  • [25] Connection between the Hadamard and matrix products with an application to matrix-variate Birnbaum-Saunders distributions
    Caro-Lopera, Francisco J.
    Leiva, Victor
    Balakrishnan, N.
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2012, 104 (01) : 126 - 139
  • [26] STOCHASTIC REPRESENTATIONS OF THE MATRIX VARIATE SKEW ELLIPTICALLY CONTOURED DISTRIBUTIONS
    Zheng, Shimin
    Zhang, Chunming
    Knisley, Jeff
    [J]. ADVANCES AND APPLICATIONS IN STATISTICS, 2013, 33 (02) : 83 - 98
  • [27] Moments and quadratic forms of matrix variate skew normal distributions
    Zheng, Shimin
    Knisley, Jeff
    Wang, Kesheng
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2016, 45 (03) : 794 - 803
  • [28] SOME INFERENCE PROBLEMS FOR MATRIX VARIATE ELLIPTICALLY CONTOURED DISTRIBUTIONS
    GUPTA, AK
    VARGA, T
    [J]. STATISTICS, 1995, 26 (03) : 219 - 229
  • [29] A NEW DEFINITION OF FORM-INVARIANCE MATRIX VARIATE DISTRIBUTIONS
    Arashi, M.
    Bekker, A.
    Ratnaparkhi, M.
    [J]. SOUTH AFRICAN STATISTICAL JOURNAL, 2014, 48 (02) : 205 - 212
  • [30] Jones-Balakrishnan Property for Matrix Variate Beta Distributions
    Daya K. Nagar
    Alejandro Roldán-Correa
    Saralees Nadarajah
    [J]. Sankhya A, 2023, 85 : 1489 - 1509