Jones-Balakrishnan Property for Matrix Variate Beta Distributions

被引:0
|
作者
Daya K. Nagar
Alejandro Roldán-Correa
Saralees Nadarajah
机构
[1] Universidad de Antioquia,Instituto de Matemáticas
[2] University of Manchester,Department of Mathematics
来源
Sankhya A | 2023年 / 85卷
关键词
Beta distribution; independence; matrix valued function; transformation.; 60E05; 62E10; 62H10;
D O I
暂无
中图分类号
学科分类号
摘要
Let X and Y be independent m × m symmetric positive definite random matrices. Assume that X follows a matrix variate beta distribution with parameters a and b and that Y has a matrix variate beta distribution with parameters a + b and c. Define R=Im−Y+Y1/2XY1/2−1/2Y1/2XY1/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\boldsymbol {R}= \left (\boldsymbol {I}_{m} - \boldsymbol {Y} + \boldsymbol {Y}^{1/2} \boldsymbol {X} \boldsymbol {Y}^{1/2}\right )^{-1/2} \boldsymbol {Y}^{1/2} \boldsymbol {X} \boldsymbol {Y}^{1/2}$\end{document}Im−Y+Y1/2XY1/2−1/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \left (\boldsymbol {I}_{m} - \boldsymbol {Y} + \boldsymbol {Y}^{1/2} \boldsymbol {X} \boldsymbol {Y}^{1/2}\right )^{-1/2} $\end{document} and S=Im−Y+Y1/2XY1/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\boldsymbol {S}= \boldsymbol {I}_{m} - \boldsymbol {Y} + \boldsymbol {Y}^{1/2} \boldsymbol {X} \boldsymbol {Y}^{1/2}$\end{document}, where Im is an identity matrix and A1/2 is the unique symmetric positive definite square root of A. In this paper, we have shown that random matrices R and S are independent and follow matrix variate beta distributions generalizing an independence property established by Jones and Balakrishnan (Statistics and Probability Letters, 170 (2021), article id 109011) in the univariate case.
引用
收藏
页码:1489 / 1509
页数:20
相关论文
共 50 条
  • [1] Jones-Balakrishnan Property for Matrix Variate Beta Distributions
    Nagar, Daya K.
    Roldan-Correa, Alejandro
    Nadarajah, Saralees
    [J]. SANKHYA-SERIES A-MATHEMATICAL STATISTICS AND PROBABILITY, 2022, 85 (2): : 1489 - 1509
  • [2] Jones-Balakrishnan Property for Matrix Variate Beta Distributions
    Nagar, Daya K.
    Roldan-Correa, Alejandro
    Nadarajah, Saralees
    [J]. SANKHYA-SERIES A-MATHEMATICAL STATISTICS AND PROBABILITY, 2023, 85 (02): : 1489 - 1509
  • [3] Doubly noncentral singular matrix variate beta distributions
    Díaz-García J.A.
    Gutiérrez-Jáimez R.
    [J]. Journal of Statistical Theory and Practice, 2010, 4 (3) : 421 - 431
  • [4] MATRIX VARIATE PARETO DISTRIBUTIONS
    Zinodiny, Shokofeh
    Nadarajah, Saralees
    [J]. MATHEMATICA SLOVACA, 2021, 71 (02) : 475 - 490
  • [5] Duality between matrix variate t and matrix variate VG distributions
    Haffar, Solomon W.
    Seneta, Eugene
    Gupta, Arjun K.
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2006, 97 (06) : 1467 - 1475
  • [6] Three skewed matrix variate distributions
    Gallaugher, Michael P. B.
    McNicholas, Paul D.
    [J]. STATISTICS & PROBABILITY LETTERS, 2019, 145 : 103 - 109
  • [7] Matrix variate skew normal distributions
    Chen, JT
    Gupta, AK
    [J]. STATISTICS, 2005, 39 (03) : 247 - 253
  • [8] `BIMATRIX VARIATE GENERALISED BETA DISTRIBUTIONS
    Diaz-Garcia, Jose A.
    Gutierrez Jaimez, Ramon
    [J]. SOUTH AFRICAN STATISTICAL JOURNAL, 2010, 44 (02) : 193 - 208
  • [9] Singular matrix variate beta distribution
    Diaz-Garcia, Jose A.
    Gutierrez Jaimez, Ramon
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2008, 99 (04) : 637 - 648