Duality between matrix variate t and matrix variate VG distributions

被引:3
|
作者
Haffar, Solomon W. [1 ]
Seneta, Eugene
Gupta, Arjun K.
机构
[1] Bowling Green State Univ, Dept Math & Stat, Bowling Green, OH 43403 USA
[2] Univ Sydney, Sch Math & Stat, Sydney, NSW 2006, Australia
[3] S Dakota State Univ, Dept Math & Stat, Brookings, SD 57007 USA
关键词
characteristic function; inversion theorem; inverted Wishart; log return; matrix generalized inverse Gaussian; matrix variate distributions; Wishart; variance-gamma;
D O I
10.1016/j.jmva.2005.09.002
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The (univariate) t-distribution and symmetric VG. distribution are competing models [D.S. Madan, E. Seneta, The variance gamma (V.G.) model for share market returns, J. Business 63 (1990) 511-524; T.W. Epps, Pricing Derivative Securities, World Scientific, Singapore, 2000 (Section 9.4)] for the distribution of log-increments of the price of a financial asset. Both result from scale-mixing of the normal distribution. The analogous matrix variate distributions and their characteristic functions are derived in the sequel and are dual to each other in the sense of a simple Duality Theorem. This theorem can thus be used to yield the derivation of the characteristic function of the t-distribution and is the essence of the idea used by Dreier and Kotz [A note on the characteristic function of the t-distribution, Statist. Probab. Lett. 57 (2002) 221-224]. The present paper generalizes the univariate ideas in Section 6 of Seneta [Fitting the variance-gamma (VG) model to financial data, stochastic methods and their applications, Papers in Honour of Chris Heyde, Applied Probability Trust, Sheffield, J. Appl. Probab. (Special Volume) 41A (2004) 177-187] to the general matrix generalized inverse gaussian (MGIG) distribution. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:1467 / 1475
页数:9
相关论文
共 50 条
  • [1] Finite Mixtures of Matrix Variate t Distributions
    Dogru, Fatma Zehra
    Bulut, Y. Murat
    Arslan, Olcay
    [J]. GAZI UNIVERSITY JOURNAL OF SCIENCE, 2016, 29 (02): : 335 - 341
  • [2] Singular matric and matrix variate t distributions
    Diaz-Garcia, Jose A.
    Gutierrez-Jaimez, Ramon
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2009, 139 (07) : 2382 - 2387
  • [3] MATRIX VARIATE PARETO DISTRIBUTIONS
    Zinodiny, Shokofeh
    Nadarajah, Saralees
    [J]. MATHEMATICA SLOVACA, 2021, 71 (02) : 475 - 490
  • [4] Three skewed matrix variate distributions
    Gallaugher, Michael P. B.
    McNicholas, Paul D.
    [J]. STATISTICS & PROBABILITY LETTERS, 2019, 145 : 103 - 109
  • [5] Matrix variate skew normal distributions
    Chen, JT
    Gupta, AK
    [J]. STATISTICS, 2005, 39 (03) : 247 - 253
  • [6] Matrix Variate RBM Model with Gaussian Distributions
    Liu, Simeng
    Sun, Yanfeng
    Hu, Yongli
    Gao, Junbin
    Ju, Fujiao
    Yin, Baocai
    [J]. 2017 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2017, : 808 - 815
  • [7] Finite mixtures of skewed matrix variate distributions
    Gallaugher, Michael P. B.
    McNicholas, Paul D.
    [J]. PATTERN RECOGNITION, 2018, 80 : 83 - 93
  • [8] On matrix variate skew-normal distributions
    Harrar, Solomon W.
    Gupta, Arjun K.
    [J]. STATISTICS, 2008, 42 (02) : 179 - 194
  • [9] MATRIX VARIATE GENERALIZED ASYMMETRIC LAPLACE DISTRIBUTIONS
    Kozubowski, Tomasz j.
    Mazur, Stepan
    Podgorski, Krzysztof
    [J]. THEORY OF PROBABILITY AND MATHEMATICAL STATISTICS, 2023, : 55 - 80
  • [10] Matrix variate extended skew normal distributions
    Ning, Wei
    Gupta, Arjun K.
    [J]. RANDOM OPERATORS AND STOCHASTIC EQUATIONS, 2012, 20 (04) : 299 - 310