Lattice QCD in curved spacetimes

被引:19
|
作者
Yamamoto, Arata [1 ,2 ]
机构
[1] Univ Tokyo, Dept Phys, Tokyo 1130033, Japan
[2] RIKEN, Nishina Ctr, Theoret Res Div, Wako, Saitama 3510198, Japan
来源
PHYSICAL REVIEW D | 2014年 / 90卷 / 05期
关键词
QUANTUM-GRAVITY; WORLD-STRUCTURE; GAUGE-THEORY; KINEMATICS; QUANTIZATION; CURVATURE; INTEGRALS; TENSION; TIME;
D O I
10.1103/PhysRevD.90.054510
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We formulate the lattice QCD simulation with background classical gravitational fields. This formulation enables us to study nonperturbative aspects of quantum phenomena in curved spacetimes from the first principles. As the first application, we perform the simulation with the Friedmann-Lemaitre-Robertson-Walker metric and analyze particle production in the expanding universe.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] The generalized Heun equation in QFT in curved spacetimes
    Batic, D.
    Schmid, H.
    Winkelmeier, M.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (40): : 12559 - 12564
  • [42] POSITIVE AND NEGATIVE FREQUENCY DECOMPOSITIONS IN CURVED SPACETIMES
    PANANGADEN, P
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1980, 25 (01): : 31 - 31
  • [43] Holographic thermal field theory on curved spacetimes
    Marolf, Donald
    Rangamani, Mukund
    Wiseman, Toby
    CLASSICAL AND QUANTUM GRAVITY, 2014, 31 (06)
  • [44] A NEW APPROACH TO STRING QUANTIZATION IN CURVED SPACETIMES
    DEVEGA, HJ
    SANCHEZ, N
    PHYSICS LETTERS B, 1987, 197 (03) : 320 - 326
  • [45] Curved spacetimes with local κ-Poincare dispersion relation
    Barcaroli, Leonardo
    Brunkhorst, Lukas K.
    Gubitosi, Giulia
    Loret, Niccolo
    Pfeifer, Christian
    PHYSICAL REVIEW D, 2017, 96 (08)
  • [46] A characterization of strong wave tails in curved spacetimes
    Nolan, BC
    CLASSICAL AND QUANTUM GRAVITY, 1997, 14 (05) : 1295 - 1308
  • [47] Krein space quantization in curved and flat spacetimes
    Garidi, T
    Huguet, E
    Renaud, J
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (01): : 245 - 256
  • [48] Cavities in curved spacetimes: The response of particle detectors
    Ahmadzadegan, Aida
    Martin-Martinez, Eduardo
    Mann, Robert B.
    PHYSICAL REVIEW D, 2014, 89 (02):
  • [49] Light propagation: From dielectrics to curved spacetimes
    Pedrosa, I. A.
    Furtado, Claudio
    Rosas, Alexandre
    EPL, 2011, 94 (03)
  • [50] Boundary description of planckian scattering in curved spacetimes
    Arcioni, G
    de Haro, S
    O'Loughlin, M
    JOURNAL OF HIGH ENERGY PHYSICS, 2001, (07):