Lattice QCD in curved spacetimes

被引:19
|
作者
Yamamoto, Arata [1 ,2 ]
机构
[1] Univ Tokyo, Dept Phys, Tokyo 1130033, Japan
[2] RIKEN, Nishina Ctr, Theoret Res Div, Wako, Saitama 3510198, Japan
来源
PHYSICAL REVIEW D | 2014年 / 90卷 / 05期
关键词
QUANTUM-GRAVITY; WORLD-STRUCTURE; GAUGE-THEORY; KINEMATICS; QUANTIZATION; CURVATURE; INTEGRALS; TENSION; TIME;
D O I
10.1103/PhysRevD.90.054510
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We formulate the lattice QCD simulation with background classical gravitational fields. This formulation enables us to study nonperturbative aspects of quantum phenomena in curved spacetimes from the first principles. As the first application, we perform the simulation with the Friedmann-Lemaitre-Robertson-Walker metric and analyze particle production in the expanding universe.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Field Theory on Curved Noncommutative Spacetimes
    Schenkel, Alexander
    Uhlemann, Christoph F.
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2010, 6
  • [22] Caustics and wave propagation in curved spacetimes
    Harte, Abraham I.
    Drivas, Theodore D.
    PHYSICAL REVIEW D, 2012, 85 (12):
  • [23] THEORY OF PARTICLE DETECTION IN CURVED SPACETIMES
    HAJICEK, P
    PHYSICAL REVIEW D, 1977, 15 (10): : 2757 - 2774
  • [24] Complete complementarity relations in curved spacetimes
    Basso, Marcos L. W.
    Maziero, Jonas
    PHYSICAL REVIEW A, 2021, 103 (03)
  • [25] Classical and quantum spins in curved spacetimes
    Silenko, Alexander J.
    ACTA PHYSICA POLONICA B, 2008, : 87 - 107
  • [26] Rotating ideal gases in curved spacetimes
    Ho, JW
    Kang, GW
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 1999, 35 : S623 - S628
  • [27] Electromagnetic Duality Anomaly in Curved Spacetimes
    Agullo, Ivan
    del Rio, Adrian
    Navarro-Salas, Jose
    PHYSICAL REVIEW LETTERS, 2017, 118 (11)
  • [28] Evolution of thick shells in curved spacetimes
    Khosravi, Sh
    Khakshournia, S.
    Mansouri, R.
    CLASSICAL AND QUANTUM GRAVITY, 2006, 23 (20) : 5927 - 5939
  • [29] Presheaves of Superselection Structures in Curved Spacetimes
    Ezio Vasselli
    Communications in Mathematical Physics, 2015, 335 : 895 - 933
  • [30] Dirac Operators on Noncommutative Curved Spacetimes
    Schenkel, Alexander
    Uhlemann, Christoph F.
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2013, 9