Rigorous microlens design using vector electromagnetic method combined with simulated annealing optimization

被引:6
|
作者
Zuo, Hai-Jie [1 ]
Zhang, Jiang-Yong [1 ]
Ying, Ying-Lei [1 ]
Zhang, Bao-Ping [1 ]
Hou, Zhi-Jin [2 ]
Chen, Hong-Xu [2 ]
Si, Jun-Jie [2 ]
机构
[1] Xiamen Univ, Dept Elect Engn, Lab Micronano Optoelect, Xiamen 361005, Fujian, Peoples R China
[2] Luoyang Optoelectro Technol Dev Ctr, Luoyang 471099, Henan, Peoples R China
来源
OPTICS EXPRESS | 2014年 / 22卷 / 10期
关键词
DIFFRACTIVE MICROLENSES; ARRAY;
D O I
10.1364/OE.22.012653
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this paper, finite-aperture diffractive optical element with its critical dimension smaller than illumination wavelength is modeled and optimized using an integrated method. This method employs rigorous analysis model based on Finite Difference Time Domain (FDTD), and simulated annealing (SA) global search algorithm. Numerical results reveal that the diffraction efficiency of the 8-step microlens quickly climbs to its global optimum along with the optimization process, which manifests its global search ability. The design algorithm and implementation are discussed in details. Considering its time consuming efficiency and global search ability, our method provides valuable reference value in practical multistep microlens design. (C) 2014 Optical Society of America
引用
收藏
页码:12653 / 12658
页数:6
相关论文
共 50 条
  • [41] Intelligent simulated annealing algorithm for the optimal design of electromagnetic devices
    Sun, JZ
    Wang, XH
    Wu, YZ
    Tang, RY
    ELECTROMAGNETIC FIELD PROBLEMS AND APPLICATIONS (ICEF '96), 1997, : 257 - 260
  • [42] Integration of electromagnetic induction sensor data in soil sampling scheme optimization using simulated annealing
    E. Barca
    A. Castrignanò
    G. Buttafuoco
    D. De Benedetto
    G. Passarella
    Environmental Monitoring and Assessment, 2015, 187
  • [43] Integration of electromagnetic induction sensor data in soil sampling scheme optimization using simulated annealing
    Barca, E.
    Castrignano, A.
    Buttafuoco, G.
    De Benedetto, D.
    Passarella, G.
    ENVIRONMENTAL MONITORING AND ASSESSMENT, 2015, 187 (07)
  • [44] Transductive support vector machines using simulated annealing
    Sun, F
    Sun, MS
    COMPUTATIONAL INTELLIGENCE AND SECURITY, PT 1, PROCEEDINGS, 2005, 3801 : 536 - 543
  • [45] The Application of Optimization Algorithm Using Simulated Annealing Method for Parallel Computing Systems
    Savin, A. N.
    Timofeeva, N. E.
    IZVESTIYA SARATOVSKOGO UNIVERSITETA NOVAYA SERIYA-MATEMATIKA MEKHANIKA INFORMATIKA, 2012, 12 (01): : 110 - 116
  • [46] Function Optimization Using Robust Simulated Annealing
    Pandey, Hari Mohan
    Gajendran, Ahalya
    INFORMATION SYSTEMS DESIGN AND INTELLIGENT APPLICATIONS, VOL 3, INDIA 2016, 2016, 435 : 347 - 355
  • [47] Data Replication Optimization Using Simulated Annealing
    Wee, Chee Keong
    Nayak, Richi
    DATA MINING, AUSDM 2019, 2019, 1127 : 222 - 234
  • [48] Optimization of Gear Changing using Simulated Annealing
    Becheru, Alexandru P.
    Stoean, Catalin
    ANNALS OF THE UNIVERSITY OF CRAIOVA-MATHEMATICS AND COMPUTER SCIENCE SERIES, 2012, 39 (02): : 309 - 321
  • [49] Source Optimization Using Simulated Annealing Algorithm
    Jiang, Haibo
    Xing, Tingwen
    Du, Meng
    7TH INTERNATIONAL SYMPOSIUM ON ADVANCED OPTICAL MANUFACTURING AND TESTING TECHNOLOGIES: OPTICAL TEST AND MEASUREMENT TECHNOLOGY AND EQUIPMENT, 2014, 9282
  • [50] Using simulated annealing for paper cutting optimization
    Martínez-Alfaro, H
    Valenzuela-Rendón, M
    MICAI 2004: ADVANCES IN ARTIFICIAL INTELLIGENCE, 2004, 2972 : 11 - 20