Source Optimization Using Simulated Annealing Algorithm

被引:0
|
作者
Jiang, Haibo [1 ,2 ]
Xing, Tingwen [1 ]
Du, Meng [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Opt & Elect, Lab Appl Opt, Chengdu 610209, Peoples R China
[2] Chinese Acad Sci, Grad Sch, Beijing 100039, Peoples R China
关键词
Source optimization; computational lithography; partially coherent imaging; inverse lithography techniques; resolution enhancement techniques(RETs); illumination optimization; OFF-AXIS ILLUMINATION; LITHOGRAPHY;
D O I
10.1117/12.2069398
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
As lithography still pushing toward to lower k(1) imaging, traditional illumination source shapes may perform marginally in resolving complex layouts, freeform source shapes are expected to achieve better image quality. Illumination optimization as one of inverse lithography techniques attempts to synthesize the input source which leads to the desired output wafer pattern by inverting the forward model from mask to wafer. This paper proposes a method to optimize illumination by using simulated annealing algorithms (SA). A synthesis of the NILS values at multi-critical mask locations over a focus range is chose as the merit function. The advantage of the SA algorithm is that it can identify optimum source solutions without any additional apriori knowledge about lithographic processes. The results show that our method can provide great improvements in both image quality and DOF.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Noise barrier optimization using a simulated annealing algorithm
    Mun, Sungho
    Cho, Yoon-Ho
    [J]. APPLIED ACOUSTICS, 2009, 70 (08) : 1094 - 1098
  • [2] Thermodynamic calculations using a simulated annealing optimization algorithm
    Bonilla-Petriciolet, Adrian
    Segovia-Hernandez, Juan Gabriel
    Castillo-Borja, Florianne
    Bravo-Sanchez, Ulises Ivan
    [J]. REVISTA DE CHIMIE, 2007, 58 (04): : 369 - 378
  • [3] Sparse array optimization by using the simulated annealing algorithm
    Behar, Vera
    Nikolov, Milen
    [J]. NUMERICAL METHODS AND APPLICATIONS, 2007, 4310 : 223 - +
  • [4] Binary wavefront optimization using a simulated annealing algorithm
    Fang, Longjie
    Zuo, Haoyi
    Yang, Zuogang
    Zhang, Xicheng
    Du, Jinglei
    Pang, Lin
    [J]. APPLIED OPTICS, 2018, 57 (08) : 1744 - 1751
  • [5] Optimization of Plant Light Source Based on Simulated Annealing Particle Swarm Optimization Algorithm
    Cui, Shigang
    Lv, Huimin
    Wu, Xingli
    Zhang, Yongli
    He, Lin
    [J]. PROCEEDINGS OF THE 30TH CHINESE CONTROL AND DECISION CONFERENCE (2018 CCDC), 2018, : 700 - 703
  • [6] A simulated annealing algorithm for stiffness optimization
    Vasile, Alexandru
    Coropetchi, Iulian Constantin
    Sorohan, Stefan
    Picu, Catalin Radu
    Constantinescu, Dan Mihai
    [J]. 4TH INTERNATIONAL CONFERENCE ON STRUCTURAL INTEGRITY (ICSI 2021), 2022, 37 : 857 - 864
  • [7] A simulated annealing algorithm for multiobjective optimization
    Suppapitnarm, A
    Seffen, KA
    Parks, GT
    Clarkson, PJ
    [J]. ENGINEERING OPTIMIZATION, 2000, 33 (01) : 59 - 85
  • [8] Structure optimization of power system using Simulated Annealing Algorithm
    Rami, Abdelkader
    [J]. PRZEGLAD ELEKTROTECHNICZNY, 2011, 87 (01): : 258 - 261
  • [9] Optimization of electromagnetic devices by using intelligent simulated annealing algorithm
    Tang, RY
    Sun, JZ
    Li, Y
    Cui, X
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 1998, 34 (05) : 2992 - 2995
  • [10] Simulated annealing: A heuristic optimization algorithm
    Palshikar, GK
    [J]. DR DOBBS JOURNAL, 2001, 26 (09): : 121 - 124