Putting (single-cell) data into orbit

被引:0
|
作者
Crosta, Giovanni Franco [1 ]
机构
[1] Univ Milano Bicocca, Milan, Italy
关键词
Cell differentiation; single-cell genomics; pseudo-time; cytoskeletal morphology; dynamical systems; phase portrait; attractors; energy function; gradient flow; causality; TRAJECTORIES;
D O I
10.1117/12.2506709
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Data from single-cell mRNA sequencing, made available by leading-edge experimental methods, demand proper representation and understanding. Multivariate statistics and graph theoretic methods represent cells in a suitable feature space, assign to each cell a time label known as "pseudo-time" and display "trajectories" (in fact orbits) in such space. Orbits shall describe a process by which progenitors differentiate into one or more types of adult cells: broncho-alveolar progenitors are e.g., found to evolve into two distinct pneumocyte types. This work aims at applying the qualitative theory of dynamical systems to describe the differentiation process. Some notions of qualitative theory are presented ( 2). The main stages of single-cell data analysis are outlined ( 3). Next, a two-dimensional continuous time, autonomous dynamical system of polynomial type is looked for, the orbits of which may interpret some sequences of data points in feature (equivalent to state) space. Section 4 defines an energy function F of two variables, {sigma(1), sigma(2)}, and the autonomous dynamical system obtained from del F, which thus generates a gradient flow. Both F and the gradient flow give rise to a phase portrait with two attractors, A and B, a saddle point, O, and a separatrix. These properties are suggested by data from single cell sequencing. Initial states of the system correspond to progenitors. Attractors A and B correspond to the two cell types yielded by progenitor differentiation. The separatrix and the saddle point make sure an orbit asymptotically reaches either A or B. Why and how a gradient flow model shall be applied to data from single-cell sequencing is discussed in 5. The application of dynamical system theory presented herewith relies on a heuristic basis, as all population dynamics models do. Nonetheless, placing a given cell on an orbit of its own enables time ordering and compliance with causality, unlike pseudo-time assignment induced by a minimum spanning tree. An earlier (2009) application in a much simpler context, the evolving morphology of cytoskeletal tubulines, is finally recalled: from cyto-toxicity experiments, epifluorescence images of tubulin filaments were obtained, then analysed and assigned to morphology classes; class centroids formed a sequence in feature (equivalent to state) space describing loss of cytoskeletal structure followed by its recovery.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Single-cell Transcriptome Study as Big Data
    Pingjian Yu
    Wei Lin
    Genomics,Proteomics & Bioinformatics, 2016, (01) : 21 - 30
  • [22] A review on integration methods for single-cell data
    Pan D.
    Li H.
    Liu H.
    Sun X.
    1600, West China Hospital, Sichuan Institute of Biomedical Engineering (38): : 1010 - 1017
  • [23] Benchmark of Data Integration in Single-Cell Proteomics
    Gong, Yaguo
    Dai, Yangbo
    Wu, Qibiao
    Guo, Li
    Yao, Xiaojun
    Yang, Qingxia
    ANALYTICAL CHEMISTRY, 2025, 97 (02) : 1254 - 1263
  • [24] Integrated analysis of multimodal single-cell data
    Hao, Yuhan
    Hao, Stephanie
    Andersen-Nissen, Erica
    Mauck, William M. I. I. I. I. I. I.
    Zheng, Shiwei
    Butler, Andrew
    Lee, Maddie J.
    Wilk, Aaron J.
    Darby, Charlotte
    Zager, Michael
    Hoffman, Paul
    Stoeckius, Marlon
    Papalexi, Efthymia
    Mimitou, Eleni P.
    Jain, Jaison
    Srivastava, Avi
    Stuart, Tim
    Fleming, Lamar M.
    Yeung, Bertrand
    Rogers, Angela J.
    McElrath, Juliana M.
    Blish, Catherine A.
    Gottardo, Raphael
    Smibert, Peter
    Satija, Rahul
    CELL, 2021, 184 (13) : 3573 - +
  • [25] scHiGex: predicting single-cell gene expression based on single-cell Hi-C data
    Shrestha, Bishal
    Siciliano, Andrew Jordan
    Zhu, Hao
    Liu, Tong
    Wang, Zheng
    NAR GENOMICS AND BIOINFORMATICS, 2025, 7 (01)
  • [26] Optimal Gene Filtering for Single-Cell data (OGFSC)-a gene filtering algorithm for single-cell RNA-seq data
    Hao, Jie
    Cao, Wei
    Huang, Jian
    Zou, Xin
    Han, Ze-Guang
    BIOINFORMATICS, 2019, 35 (15) : 2602 - 2609
  • [27] scDA: Single cell discriminant analysis for single-cell RNA sequencing data
    Shi, Qianqian
    Li, Xinxing
    Peng, Qirui
    Zhang, Chuanchao
    Chen, Luonan
    Computational and Structural Biotechnology Journal, 2021, 19 : 3234 - 3244
  • [28] scDA: Single cell discriminant analysis for single-cell RNA sequencing data
    Shi, Qianqian
    Li, Xinxing
    Peng, Qirui
    Zhang, Chuanchao
    Chen, Luonan
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2021, 19 : 3234 - 3244
  • [29] Characterization of cell fate probabilities in single-cell data with Palantir
    Setty, Manu
    Kiseliovas, Vaidotas
    Levine, Jacob
    Gayoso, Adam
    Mazutis, Linas
    Pe'er, Dana
    NATURE BIOTECHNOLOGY, 2019, 37 (04) : 451 - +
  • [30] Hierarchical progressive learning of cell identities in single-cell data
    Michielsen, Lieke
    Reinders, Marcel J. T.
    Mahfouz, Ahmed
    NATURE COMMUNICATIONS, 2021, 12 (01)