Model-based estimation of forest canopy parameters using polarimetric and interferometric SAR

被引:0
|
作者
Brown, CG [1 ]
Sarabandi, K [1 ]
机构
[1] Univ Michigan, Dept Elect Engn & Comp Sci, Radiat Lab, Ann Arbor, MI 48109 USA
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Synthetic aperture radar (SAR), interferometric SAR (INSAR), and polarimetric INSAR (POLINSAR) have been shown to be sensitive to various biophysical forest canopy parameters. The two general classes of models employed in parameter extraction are random-media and structure-based. Since the quality of canopy parameter retrieval depends on the attributes of the forward-scattering models that are inverted, we review the general characteristics of each type of model. The random-media models invoke simplifying assumptions, such as independent scattering statistics, to yield analytical expressions. Some of the central assumptions, however, do not hold as resolution increases. Structure-based models can be used in these high-resolution scenarios. We are developing a new structure-based wideband SAR/INSAR/POLINSAR model to explore the effects of increasing resolution on POLINSAR observables: A simple example of a structure-based SAR simulator is presented.
引用
收藏
页码:357 / 359
页数:3
相关论文
共 50 条
  • [31] Forest Canopy Height Estimation Using Polarimetric Interferometric Synthetic Aperture Radar (PolInSAR) Technology Based on Full-Polarized ALOS/PALSAR Data
    Chen, Wei
    Zheng, Qihui
    Xiang, Haibing
    Chen, Xu
    Sakai, Tetsuro
    [J]. REMOTE SENSING, 2021, 13 (02) : 1 - 21
  • [32] Model-Based Estimation of Forest Canopy Height and Biomass in the Canadian Boreal Forest Using Radar, LiDAR, and Optical Remote Sensing
    Benson, Michael L.
    Pierce, Leland
    Bergen, Kathleen
    Sarabandi, Kamal
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (06): : 4635 - 4653
  • [33] ADAPTIVE MODEL-BASED SCATTERING DECOMPOSITION OF POLARIMETRIC SAR INTERFEROMETRY
    Xu Liying
    Li Shiqiang
    Deng Yunkai
    Robert Wang
    [J]. Journal of Electronics(China), 2013, 30 (05) : 463 - 468
  • [34] Model-Based Target Scattering Decomposition of Polarimetric SAR Tomography
    Aghababaee, Hossein
    Sahebi, Mahmod Reza
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2018, 56 (02): : 972 - 983
  • [35] Adaptive Model-Based Decomposition of Polarimetric SAR Covariance Matrices
    Arii, Motofumi
    van Zyl, Jakob J.
    Kim, Yunjin
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2011, 49 (03): : 1104 - 1113
  • [36] An Improvement on the Complete Model-Based Decomposition of Polarimetric SAR Data
    An, Wentao
    Xie, Chunhua
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2014, 11 (11) : 1926 - 1930
  • [37] Model-based classification of polarimetric SAR sea ice data
    Scheuchl, B
    Hajnsek, I
    Cumming, IG
    [J]. IGARSS 2002: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM AND 24TH CANADIAN SYMPOSIUM ON REMOTE SENSING, VOLS I-VI, PROCEEDINGS: REMOTE SENSING: INTEGRATING OUR VIEW OF THE PLANET, 2002, : 1521 - 1523
  • [38] An Extension of a Complete Model-Based Decomposition of Polarimetric SAR Data
    Zhu, Feiya
    Zhang, Yunhua
    Li, Dong
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2016, 13 (02) : 287 - 291
  • [39] Interferometric SAR topographic mapping, a Bayesian model-based approach
    Wilkinson, AJ
    Datcu, M
    [J]. COMSIG '97 - PROCEEDINGS OF THE 1997 SOUTH AFRICAN SYMPOSIUM ON COMMUNICATIONS AND SIGNAL PROCESSING, 1997, : 83 - 88
  • [40] Tree height estimation using an airborne L-band polarimetric interferometric SAR
    Shimada, M
    Multhar, Q
    Tadono, T
    Wakabayashi, H
    [J]. IGARSS 2001: SCANNING THE PRESENT AND RESOLVING THE FUTURE, VOLS 1-7, PROCEEDINGS, 2001, : 1430 - 1432