Model-Based Estimation of Forest Canopy Height and Biomass in the Canadian Boreal Forest Using Radar, LiDAR, and Optical Remote Sensing

被引:10
|
作者
Benson, Michael L. [1 ]
Pierce, Leland [1 ]
Bergen, Kathleen [2 ]
Sarabandi, Kamal [1 ]
机构
[1] Univ Michigan, Dept Elect Engn & Comp Sci, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Sch Environm & Sustainabil, Ann Arbor, MI 48109 USA
来源
关键词
Forestry; Laser radar; Remote sensing; Biomass; Biological system modeling; Synthetic aperture radar; Optical sensors; canopy height; feature estimation; fractal trees; Landsat5; TM; Light Detection And Ranging (LiDAR); Michigan fractal-tree model (MFTM); remote sensing; simulation; slicer; synthetic aperture radar (SAR); ABOVEGROUND BIOMASS; NATURE-RESERVE; SAR; VEGETATION; SCATTERING; IMAGERY; TM;
D O I
10.1109/TGRS.2020.3018638
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
One of the fundamental technical challenges of any new spaceborne vegetation remote sensing mission is the determination of what sensor(s) to place onboard and what, if any, overlapping modes of operation they will employ as each onboard sensor adds significant cost to the overall mission. In this article, the remote sensing of forest parameters using multimodal remote sensing is presented. In particular, polarimetric radar, Light Detection And Ranging (LiDAR), and near-IR passive optical sensing platforms are employed in conjunction with physics-based models. These models are used to accurately estimate forest aboveground biomass as well as canopy height in homogeneous areas. It is shown that this proposed method is capable of achieving high accuracy estimates while using minimal ancillary data in the estimation process. We present a method to combine measured data sets with our geometric and electromagnetic sensor models to develop a forest parameter estimation algorithm that fuses multimodal remote sensing technologies with a minimal amount of ground information and yields an accurate estimate of forest structure including dry biomass and canopy height with rms errors of 1.6 kg/m(2) and 1.68 m respectively.
引用
收藏
页码:4635 / 4653
页数:19
相关论文
共 50 条
  • [1] MODEL-BASED ESTIMATION OF LARGE AREA FOREST CANOPY HEIGHT AND BIOMASS USING RADAR AND OPTICAL REMOTE SENSING WITH LIMITED LIDAR DATA
    Benson, Michael
    Pierce, Leland
    Sarabandi, Kamal
    [J]. 2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2017, : 1016 - 1019
  • [2] FOREST STRUCTURE ESTIMATION USING SAR, LIDAR, AND OPTICAL DATA IN THE CANADIAN BOREAL FOREST
    Benson, Michael
    Pierce, Leland
    Bergen, Kathleen
    Sarabandi, Kamal
    Zhang, Kailai
    Ryan, Caitlin
    [J]. 2011 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2011, : 2609 - 2612
  • [3] Forest Canopy Height Estimation Using Multiplatform Remote Sensing Dataset
    Lee, Won-Jin
    Lee, Chang-Wook
    [J]. JOURNAL OF SENSORS, 2018, 2018
  • [4] FOREST BIOMASS ESTIMATION USING RADAR AND LIDAR SYNERGIES
    Tian, Siyuan
    Tanase, Mihai A.
    Panciera, Rocco
    Hacker, J.
    Lowell, Kim
    [J]. 2013 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2013, : 2145 - 2148
  • [5] Estimation of tropical forest height and biomass dynamics using lidar remote sensing at La Selva, Costa Rica
    Dubayah, R. O.
    Sheldon, S. L.
    Clark, D. B.
    Hofton, M. A.
    Blair, J. B.
    Hurtt, G. C.
    Chazdon, R. L.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES, 2010, 115
  • [6] Allometry-based estimation of forest aboveground biomass combining LiDAR canopy height attributes and optical spectral indexes
    Yang, Qiuli
    Su, Yanjun
    Hu, Tianyu
    Jin, Shichao
    Liu, Xiaoqiang
    Niu, Chunyue
    Liu, Zhonghua
    Kelly, Maggi
    Wei, Jianxin
    Guo, Qinghua
    [J]. FOREST ECOSYSTEMS, 2022, 9
  • [7] Allometry-based estimation of forest aboveground biomass combining LiDAR canopy height attributes and optical spectral indexes
    Qiuli Yang
    Yanjun Su
    Tianyu Hu
    Shichao Jin
    Xiaoqiang Liu
    Chunyue Niu
    Zhonghua Liu
    Maggi Kelly
    Jianxin Wei
    Qinghua Guo
    [J]. Forest Ecosystems, 2022, 9 (05) : 617 - 629
  • [8] Retrieval of forest canopy attributes based on a geometric-optical model using airborne LiDAR and optical remote-sensing data
    Cao, Chunxiang
    Bao, Yunfei
    Xu, Min
    Chen, Wei
    Zhang, Hao
    He, Qisheng
    Li, Zengyuan
    Guo, Huadong
    Li, Jiahong
    Li, Xiaowen
    Li, Guanghe
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2012, 33 (03) : 692 - 709
  • [9] ESTIMATING BOREAL FOREST CANOPY HEIGHT AND ABOVE GROUND BIOMASS USING MULTI-MODAL REMOTE SENSING; A DATABASE DRIVEN APPROACH
    Benson, Michael
    Pierce, Leland
    Sarabandi, Kamal
    [J]. 2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 2498 - 2501
  • [10] SYNCHRONOUS RETRIEVAL OF FOREST CANOPY COVER BY AIRBORN LIDAR AND OPTICAL REMOTE SENSING
    Cao, Chunxiang
    Xu, Min
    Bao, Yunfei
    Zhang, Hao
    [J]. 2010 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2010, : 2660 - 2663