Model-Based Estimation of Forest Canopy Height and Biomass in the Canadian Boreal Forest Using Radar, LiDAR, and Optical Remote Sensing

被引:10
|
作者
Benson, Michael L. [1 ]
Pierce, Leland [1 ]
Bergen, Kathleen [2 ]
Sarabandi, Kamal [1 ]
机构
[1] Univ Michigan, Dept Elect Engn & Comp Sci, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Sch Environm & Sustainabil, Ann Arbor, MI 48109 USA
来源
关键词
Forestry; Laser radar; Remote sensing; Biomass; Biological system modeling; Synthetic aperture radar; Optical sensors; canopy height; feature estimation; fractal trees; Landsat5; TM; Light Detection And Ranging (LiDAR); Michigan fractal-tree model (MFTM); remote sensing; simulation; slicer; synthetic aperture radar (SAR); ABOVEGROUND BIOMASS; NATURE-RESERVE; SAR; VEGETATION; SCATTERING; IMAGERY; TM;
D O I
10.1109/TGRS.2020.3018638
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
One of the fundamental technical challenges of any new spaceborne vegetation remote sensing mission is the determination of what sensor(s) to place onboard and what, if any, overlapping modes of operation they will employ as each onboard sensor adds significant cost to the overall mission. In this article, the remote sensing of forest parameters using multimodal remote sensing is presented. In particular, polarimetric radar, Light Detection And Ranging (LiDAR), and near-IR passive optical sensing platforms are employed in conjunction with physics-based models. These models are used to accurately estimate forest aboveground biomass as well as canopy height in homogeneous areas. It is shown that this proposed method is capable of achieving high accuracy estimates while using minimal ancillary data in the estimation process. We present a method to combine measured data sets with our geometric and electromagnetic sensor models to develop a forest parameter estimation algorithm that fuses multimodal remote sensing technologies with a minimal amount of ground information and yields an accurate estimate of forest structure including dry biomass and canopy height with rms errors of 1.6 kg/m(2) and 1.68 m respectively.
引用
收藏
页码:4635 / 4653
页数:19
相关论文
共 50 条
  • [41] Model-assisted regional forest biomass estimation using LiDAR and InSAR as auxiliary data: A case study from a boreal forest area
    Naesset, Erik
    Gobakken, Terje
    Solberg, Svein
    Gregoire, Timothy G.
    Nelson, Ross
    Stahl, Goran
    Weydahl, Dan
    [J]. REMOTE SENSING OF ENVIRONMENT, 2011, 115 (12) : 3599 - 3614
  • [42] RADAR-BASED FOREST BIOMASS ESTIMATION
    RAUSTE, Y
    HAME, T
    PULLIAINEN, J
    HEISKA, K
    HALLIKAINEN, M
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 1994, 15 (14) : 2797 - 2808
  • [43] The Transferability of Random Forest in Canopy Height Estimation from Multi-Source Remote Sensing Data
    Jin, Shichao
    Su, Yanjun
    Gao, Shang
    Hu, Tianyu
    Liu, Jin
    Guo, Qinghua
    [J]. REMOTE SENSING, 2018, 10 (08)
  • [44] Mapping boreal forest biomass from a SRTM and TanDEM-X based on canopy height model and Landsat spectral indices
    Sadeghi, Yaser
    St-Onge, Benoit
    Leblon, Brigitte
    Prieur, Jean-Francois
    Simard, Marc
    [J]. INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2018, 68 : 202 - 213
  • [45] BIOMASS ESTIMATION USING VERTICAL FOREST STRUCTURE FROM SAR TOMOGRAGHY: A CASE STUDY IN CANADIAN BOREAL FOREST.
    Renaudin, E.
    Mercer, B.
    Zhang, Q.
    Collins, M. J.
    [J]. XXII ISPRS CONGRESS, TECHNICAL COMMISSION VIII, 2012, 39-B8 : 431 - 435
  • [46] Estimation of the NorthSouth Transect of Eastern China forest biomass using remote sensing and forest inventory data
    Gao, Yanhua
    Liu, Xinxin
    Min, Chengcheng
    He, Honglin
    Yu, Guirui
    Liu, Min
    Zhu, Xudong
    Wang, Qiao
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2013, 34 (15) : 5598 - 5610
  • [47] An Estimation Model for Regional Forest Canopy Closure Combined with UAV LiDAR and High Spatial Resolution Satellite Remote Sensing Data
    Xu E.
    Guo Y.
    Chen E.
    Li Z.
    Zhao L.
    Liu Q.
    [J]. Wuhan Daxue Xuebao (Xinxi Kexue Ban)/Geomatics and Information Science of Wuhan University, 2022, 47 (08): : 1298 - 1308
  • [48] CLASSIFYING THE CANADIAN BOREAL FOREST'S STRUCTURE USING MULTI-MODAL REMOTE SENSING
    Benson, Michael L.
    Pierce, Leland E.
    Bergen, Kathleen M.
    Sarabandi, Kamal
    [J]. 2012 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2012, : 5329 - 5332
  • [49] Tree Stump Height Estimation Using Canopy Height Model at Tropical Forest in Ulu Jelai Forest Reserve, Pahang, Malaysia
    Saad, Siti Nor Maizah
    Maulud, Khairul Nizam Abdul
    Jaafar, Wan Shafrina Wan Mohd
    Kamarulzaman, Aisyah Marliza Muhmad
    Omar, Hamdan
    [J]. 10TH IGRSM INTERNATIONAL CONFERENCE AND EXHIBITION ON GEOSPATIAL & REMOTE SENSING, 2020, 540
  • [50] Large-area mapping of Canadian boreal forest cover, height, biomass and other structural attributes using Landsat composites and lidar plots
    Matasci, Giona
    Hermosilla, Txomin
    Wulder, Michael A.
    White, Joanne C.
    Coops, Nicholas C.
    Hobart, Geordie W.
    Zald, Harold S. J.
    [J]. REMOTE SENSING OF ENVIRONMENT, 2018, 209 : 90 - 106