IMAGE NOISE LEVEL ESTIMATION BASED ON A NEW ADAPTIVE SUPERPIXEL CLASSIFICATION

被引:0
|
作者
Fu, Peng [1 ]
Li, Changyang [2 ]
Sun, Quansen [1 ]
Cai, Weidong [2 ]
Feng, David Dagan [2 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Comp Sci & Engn, Nanjing, Jiangsu, Peoples R China
[2] Univ Sydney, Sch Informat Technol, Sydney, NSW 2006, Australia
关键词
Noise level estimation; superpixel; distance measure; additive white Gaussian noise;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Accurate estimation of noise level in images plays an important role in different image processing applications. The current algorithms can precisely estimate noise with smooth images, but it is still the challenge to approximate noise level from richly textured images. In this paper, we proposed a new adaptive superpixel classification algorithm for noise estimation in complicated textured images. Firstly, our new superpixel algorithm adapts the finite Gaussian clustering approach, which can better approximate homogeneous patches in noisy images. Then noise information is obtained locally from each superpixel patch. Finally, the best estimation of noise level is calculated with a statistical approach. Experimental results with various kinds of images demonstrate that our method is more accurate and robust compared to the five existing common used algorithms.
引用
收藏
页码:2649 / 2653
页数:5
相关论文
共 50 条
  • [31] Multiscale Superpixel-Level Subspace-Based Support Vector Machines for Hyperspectral Image Classification
    Yu, Haoyang
    Gao, Lianru
    Liao, Wenzhi
    Zhang, Bing
    Pizurica, Aleksandra
    Philips, Wilfried
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2017, 14 (11) : 2142 - 2146
  • [32] SUPERPIXEL-BASED COMPOSITE KERNEL FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Duan, Wuhui
    Li, Shutao
    Fang, Leyuan
    2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2015, : 1698 - 1701
  • [33] Classification of Hyperspectral image based on superpixel segmentation and DPC algorithm
    Chen, Nian
    Zhou, Hao
    2020 19TH INTERNATIONAL SYMPOSIUM ON DISTRIBUTED COMPUTING AND APPLICATIONS FOR BUSINESS ENGINEERING AND SCIENCE (DCABES 2020), 2020, : 138 - 141
  • [34] Superpixel-Based Brownian Descriptor for Hyperspectral Image Classification
    Zhang, Shuzhen
    Lu, Ting
    Li, Shutao
    Fu, Wei
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [35] A SUPERPIXEL-BASED FRAMEWORK FOR NOISY HYPERSPECTRAL IMAGE CLASSIFICATION
    Fu, Peng
    Sun, Quansen
    Ji, Zexuan
    Geng, Leilei
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 834 - 837
  • [36] A Novel Spectral-Spatial Classification Method for Hyperspectral Image at Superpixel Level
    Xie, Fuding
    Lei, Cunkuan
    Jin, Cui
    An, Na
    APPLIED SCIENCES-BASEL, 2020, 10 (02):
  • [37] Natural image noise level estimation based on local statistics for blind noise reduction
    Asem Khmag
    Abd Rahman Ramli
    S. A. R. Al-haddad
    Noraziahtulhidayu Kamarudin
    The Visual Computer, 2018, 34 : 575 - 587
  • [38] Natural image noise level estimation based on local statistics for blind noise reduction
    Khmag, Asem
    Ramli, Abd Rahman
    Al-Haddad, S. A. R.
    Kamarudin, Noraziahtulhidayu
    VISUAL COMPUTER, 2018, 34 (04): : 575 - 587
  • [39] Image noise level estimation based on higher-order statistics
    Mostafa Mehdipour Ghazi
    Hakan Erdogan
    Multimedia Tools and Applications, 2017, 76 : 2379 - 2397
  • [40] NO REFERENCE ESTIMATION OF NOISE LEVEL OF DIGITAL IMAGE IS BASED ON HARMONIC ANALYSIS
    Lapshenkov, E. M.
    COMPUTER OPTICS, 2012, 36 (03) : 439 - 447