Multiscale Superpixel-Level Subspace-Based Support Vector Machines for Hyperspectral Image Classification

被引:77
|
作者
Yu, Haoyang [1 ,2 ]
Gao, Lianru [3 ]
Liao, Wenzhi [4 ]
Zhang, Bing [1 ,2 ]
Pizurica, Aleksandra [4 ]
Philips, Wilfried [4 ]
机构
[1] Chinese Acad Sci, Inst Remote Sensing & Digital Earth, Key Lab Digital Earth Sci, Beijing 100094, Peoples R China
[2] Univ Chinese Acad Sci, Coll Resources & Environm, Beijing 100049, Peoples R China
[3] Chinese Acad Sci, Inst Remote Sensing & Digital Earth, Key Lab Digital Earth Sci, Beijing 100094, Peoples R China
[4] Univ Ghent, TELIN, IMEC, Dept Telecommun & Informat Proc, B-9000 Ghent, Belgium
基金
中国国家自然科学基金;
关键词
Hyperspectral image classification; multiscale superpixel segmentation; subspace projection; support vector machines (SVM); SPECTRAL-SPATIAL CLASSIFICATION;
D O I
10.1109/LGRS.2017.2755061
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
This letter introduces a new spectral-spatial classification method for hyperspectral images. A multiscale superpixel segmentation is first used to model the distribution of classes based on spatial information. In this context, the original hyperspectral image is integrated with segmentation maps via a feature fusion process in different scales such that the pixel-level data can be represented by multiscale superpixel-level (MSP) data sets. Then, a subspace-based support vector machine (SVMsub) is adopted to obtain the classification maps with multiscale inputs. Finally, the classification result is achieved via a decision fusion process. The resulting method, called MSP-SVMsub, makes use of the spatial and spectral coherences, and contributes to better feature characterization. Experimental results based on two real hyperspectral data sets indicate that the MSP-SVMsub exhibits good performance compared with other related methods.
引用
收藏
页码:2142 / 2146
页数:5
相关论文
共 50 条
  • [1] Subspace-Based Support Vector Machines for Hyperspectral Image Classification
    Gao, Lianru
    Li, Jun
    Khodadadzadeh, Mahdi
    Plaza, Antonio
    Zhang, Bing
    He, Zhijian
    Yan, Huiming
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2015, 12 (02) : 349 - 353
  • [2] Hyperspectral Imagery Classification Based on Multiscale Superpixel-Level Constraint Representation
    Yu, Haoyang
    Zhang, Xiao
    Song, Meiping
    Hu, Jiaochan
    Guo, Qiandong
    Gao, Lianru
    REMOTE SENSING, 2020, 12 (20) : 1 - 21
  • [3] PSASL: Pixel-Level and Superpixel-Level Aware Subspace Learning for Hyperspectral Image Classification
    Mei, Jie
    Wang, Yuebin
    Zhang, Liqiang
    Zhang, Bing
    Liu, Suhong
    Zhu, Panpan
    Ren, Yingchao
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (07): : 4278 - 4293
  • [4] Subspace-based support vector machines for pattern classification
    Kitamura, Takuya
    Takeuchi, Syogo
    Abe, Shigeo
    Fukui, Kazuhiro
    NEURAL NETWORKS, 2009, 22 (5-6) : 558 - 567
  • [5] Superpixel-Level Weighted Label Propagation for Hyperspectral Image Classification
    Jia, Sen
    Deng, Xianglong
    Xu, Meng
    Zhou, Jun
    Jia, Xiuping
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (07): : 5077 - 5091
  • [6] Probabilistic Fusion of Pixel-Level and Superpixel-Level Hyperspectral Image Classification
    Li, Shutao
    Lu, Ting
    Fang, Leyuan
    Jia, Xiuping
    Benediktsson, Jon Atli
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (12): : 7416 - 7430
  • [7] Spectral-Spatial Hyperspectral Image Classification Using Subspace-Based Support Vector Machines and Adaptive Markov Random Fields
    Yu, Haoyang
    Gao, Lianru
    Li, Jun
    Li, Shan Shan
    Zhang, Bing
    Benediktsson, Jon Atli
    REMOTE SENSING, 2016, 8 (04)
  • [8] Flexible Gabor-Based Superpixel-Level Unsupervised LDA for Hyperspectral Image Classification
    Jia, Sen
    Zhao, Qingqing
    Zhuang, Jiayue
    Tang, Dingding
    Long, Yaqian
    Xu, Meng
    Zhou, Jun
    Li, Qingquan
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (12): : 10394 - 10409
  • [9] SUPERPIXEL-LEVEL CONSTRAINT REPRESENTATION FOR HYPERSPECTRAL IMAGERY CLASSIFICATION
    Yu, Haoyang
    Zhang, Xiao
    Song, Meiping
    Hue, Jiaochan
    Gao, Lianru
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 56 - 59
  • [10] Efficient Superpixel-Level Multitask Joint Sparse Representation for Hyperspectral Image Classification
    Li, Jiayi
    Zhang, Hongyan
    Zhang, Liangpei
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2015, 53 (10): : 5338 - 5351