Flexible Gabor-Based Superpixel-Level Unsupervised LDA for Hyperspectral Image Classification

被引:30
|
作者
Jia, Sen [1 ,2 ,3 ]
Zhao, Qingqing [1 ,2 ,3 ]
Zhuang, Jiayue [1 ,2 ,3 ]
Tang, Dingding [1 ,2 ,3 ]
Long, Yaqian [1 ,2 ,3 ]
Xu, Meng [1 ,2 ,3 ]
Zhou, Jun [4 ]
Li, Qingquan [2 ]
机构
[1] Shenzhen Univ, Coll Comp Sci & Software Engn, Shenzhen 518060, Peoples R China
[2] Shenzhen Univ, Guangdong Key Lab Urban Informat, Shenzhen 518060, Peoples R China
[3] Shenzhen Inst Artificial Intelligence & Robot Soc, SZU Branch, Shenzhen 518060, Peoples R China
[4] Griffith Univ, Sch Informat & Commun Technol, Nathan, Qld 4111, Australia
来源
基金
中国国家自然科学基金;
关键词
Feature extraction; Hyperspectral imaging; Training; Image segmentation; Linear discriminant analysis; Data mining; Support vector machines; hyperspectral image classification; linear discriminant analysis (LDA); superpixel segmentation; COLLABORATIVE REPRESENTATION; BAND SELECTION; FUSION; SPACE;
D O I
10.1109/TGRS.2020.3048994
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Hyperspectral images encompass abundant information and provide unique characteristics for material classification. However, the labeling of training samples can be challenging in hyperspectral image classification. To address this problem, this study proposes a framework named flexible Gaborbased superpixel-level unsupervised linear discriminant analysis (FG-SuULDA) to extract the most informative and discriminating features for classification. First, a number of 3-D flexible Gabor filters are rigorously designed using an asymmetric sinusoidal wave to sufficiently characterize the spatial-spectral structure in hyperspectral images. Then, an unsupervised linear discriminant analysis strategy guided by the entropy rate superpixel (ERS) segmentation algorithm, called SuULDA, is skillfully introduced to reduce the extracted large amount of FG features. The SuULDA method not only boosts the classification capability but also increases the peculiarity of features, with the aid of superpixel information. Finally, the achieved features are imported to the popular support vector machine classifier. The proposed FG-SuULDA framework is applied to four real hyperspectral image data sets, and the experiments constantly prove that our FG-SuULDA is superior to several state-of-the-art methods in both classification performance and computational efficiency, especially with scarce training samples. The codes of this work are available at http://jiasen.tech/papers/ for the sake of reproducibility.
引用
收藏
页码:10394 / 10409
页数:16
相关论文
共 50 条
  • [1] Superpixel-Level Weighted Label Propagation for Hyperspectral Image Classification
    Jia, Sen
    Deng, Xianglong
    Xu, Meng
    Zhou, Jun
    Jia, Xiuping
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (07): : 5077 - 5091
  • [2] Probabilistic Fusion of Pixel-Level and Superpixel-Level Hyperspectral Image Classification
    Li, Shutao
    Lu, Ting
    Fang, Leyuan
    Jia, Xiuping
    Benediktsson, Jon Atli
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (12): : 7416 - 7430
  • [3] GABOR-BASED ACTIVE LEARNING FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Hu, Jie
    Liu, Chenying
    He, Lin
    Li, Jun
    [J]. 2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 2457 - 2460
  • [4] SUPERPIXEL-LEVEL CONSTRAINT REPRESENTATION FOR HYPERSPECTRAL IMAGERY CLASSIFICATION
    Yu, Haoyang
    Zhang, Xiao
    Song, Meiping
    Hue, Jiaochan
    Gao, Lianru
    [J]. IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 56 - 59
  • [5] Efficient Superpixel-Level Multitask Joint Sparse Representation for Hyperspectral Image Classification
    Li, Jiayi
    Zhang, Hongyan
    Zhang, Liangpei
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2015, 53 (10): : 5338 - 5351
  • [6] SUPERPIXEL-LEVEL SPARSE REPRESENTATION-BASED CLASSIFICATION FOR HYPERSPECTRAL IMAGERY
    Jia, Sen
    Deng, Bin
    Jia, Xiuping
    [J]. 2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 3302 - 3305
  • [7] Hyperspectral Imagery Classification Based on Multiscale Superpixel-Level Constraint Representation
    Yu, Haoyang
    Zhang, Xiao
    Song, Meiping
    Hu, Jiaochan
    Guo, Qiandong
    Gao, Lianru
    [J]. REMOTE SENSING, 2020, 12 (20) : 1 - 21
  • [8] Multiscale Superpixel-Level Subspace-Based Support Vector Machines for Hyperspectral Image Classification
    Yu, Haoyang
    Gao, Lianru
    Liao, Wenzhi
    Zhang, Bing
    Pizurica, Aleksandra
    Philips, Wilfried
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2017, 14 (11) : 2142 - 2146
  • [9] Adaptive Pixel-Level and Superpixel-Level Feature Fusion Transformer for Hyperspectral Image Classification
    Huang, Wei
    Zhou, Dazhan
    Sun, Le
    Chen, Qiqiang
    Yin, Junru
    [J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17 : 16876 - 16889
  • [10] PSASL: Pixel-Level and Superpixel-Level Aware Subspace Learning for Hyperspectral Image Classification
    Mei, Jie
    Wang, Yuebin
    Zhang, Liqiang
    Zhang, Bing
    Liu, Suhong
    Zhu, Panpan
    Ren, Yingchao
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (07): : 4278 - 4293