A Review and Comparison of Bandwidth Selection Methods for Kernel Regression

被引:46
|
作者
Koehler, Max [1 ]
Schindler, Anja [1 ]
Sperlich, Stefan [2 ,3 ]
机构
[1] Univ Gottingen, Fac Econ Sci, D-37073 Gottingen, Germany
[2] Univ Geneva, Dept Sci Econ, CH-1211 Geneva, Switzerland
[3] Univ Geneva, Res Ctr Stat, CH-1211 Geneva, Switzerland
基金
瑞士国家科学基金会;
关键词
Kernel regression; bandwidth selection; plug-in; cross-validation; SMOOTHING PARAMETER; VARIABLE BANDWIDTH; CROSS-VALIDATION; BOOTSTRAP; ERROR;
D O I
10.1111/insr.12039
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Over the last decades, several methods for selecting the bandwidth have been introduced in kernel regression. They differ quite a bit, and although there already exist more selection methods than for any other regression smoother, one can still observe coming up new ones. Given the need of automatic data-driven bandwidth selectors for applied statistics, this review is intended to explain and, above all, compare these methods. About 20 different selection methods have been revised, implemented and compared in an extensive simulation study.
引用
收藏
页码:243 / 274
页数:32
相关论文
共 50 条
  • [21] Selection of the Bandwidth Parameter in a Bayesian Kernel Regression Model for Genomic-Enabled Prediction
    Perez-Elizalde, Sergio
    Cuevas, Jaime
    Perez-Rodriguez, Paulino
    Crossa, Jose
    [J]. JOURNAL OF AGRICULTURAL BIOLOGICAL AND ENVIRONMENTAL STATISTICS, 2015, 20 (04) : 512 - 532
  • [22] Selection of the Bandwidth Parameter in a Bayesian Kernel Regression Model for Genomic-Enabled Prediction
    Sergio Pérez-Elizalde
    Jaime Cuevas
    Paulino Pérez-Rodríguez
    José Crossa
    [J]. Journal of Agricultural, Biological, and Environmental Statistics, 2015, 20 : 512 - 532
  • [23] Bandwidth selection for kernel density estimation: a review of fully automatic selectors
    Heidenreich, Nils-Bastian
    Schindler, Anja
    Sperlich, Stefan
    [J]. ASTA-ADVANCES IN STATISTICAL ANALYSIS, 2013, 97 (04) : 403 - 433
  • [24] Bandwidth selection for kernel density estimation: a review of fully automatic selectors
    Nils-Bastian Heidenreich
    Anja Schindler
    Stefan Sperlich
    [J]. AStA Advances in Statistical Analysis, 2013, 97 : 403 - 433
  • [25] Improving the Bandwidth Selection in Kernel Equating
    Andersson, Bjorn
    von Davier, Alina A.
    [J]. JOURNAL OF EDUCATIONAL MEASUREMENT, 2014, 51 (03) : 223 - 238
  • [26] Bandwidth Selection in Nonparametric Kernel Testing
    Gao, Jiti
    Gijbels, Irene
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2008, 103 (484) : 1584 - 1594
  • [27] Kernel estimate and bandwidth parameter selection
    College of Science, Shenyang University, Shenyang 110044, China
    [J]. Liaoning Gongcheng Jishu Daxue Xuebao (Ziran Kexue Ban), 2006, 3 (478-480):
  • [28] LOCAL BANDWIDTH SELECTION FOR KERNEL ESTIMATES
    STANISWALIS, JG
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1989, 84 (405) : 284 - 288
  • [29] On bandwidth selection in kernel density estimation
    Ushakov, N. G.
    Ushakov, V. G.
    [J]. JOURNAL OF NONPARAMETRIC STATISTICS, 2012, 24 (02) : 419 - 428
  • [30] Kernel Selection in Nonparametric Regression
    Halconruy, H.
    Marie, N.
    [J]. MATHEMATICAL METHODS OF STATISTICS, 2020, 29 (01) : 32 - 56