Bandwidth Selection in Nonparametric Kernel Testing

被引:86
|
作者
Gao, Jiti [1 ]
Gijbels, Irene [2 ]
机构
[1] Univ Adelaide, Sch Econ, Adelaide, SA 5005, Australia
[2] Univ Louvain, Dept Math, B-3001 Heverlee, Belgium
基金
澳大利亚研究理事会;
关键词
Choice of bandwidth parameter; Edgeworth expansion; Nonparametric kernel testing; Power function; Size function;
D O I
10.1198/016214508000000968
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose a sound approach to bandwidth selection in nonparametric kernel testing. The main idea is to find an Edgeworth expansion of the asymptotic distribution of the test concerned Due to the involvement of a kernel bandwidth in the leading term of the Edgeworth expansion. we dire able to establish closed-form expressions to explicitly represent the leading terms of both the size and power functions and then determine how the bandwidth should be chosen according to certain requirements for both the size and power functions. For example, when a significance level is given. we can choose the bandwidth such that the Power function is maximized while the size function is controlled by the significance level. Both asymptotic theory and methodology are established. In addition. we develop an easy implementation procedure for the practical realization of the established methodology and illustrate this on two simulated examples and a real data example.
引用
收藏
页码:1584 / 1594
页数:11
相关论文
共 50 条
  • [1] Nonparametric localized bandwidth selection for Kernel density estimation
    Cheng, Tingting
    Gao, Jiti
    Zhang, Xibin
    [J]. ECONOMETRIC REVIEWS, 2019, 38 (07) : 733 - 762
  • [2] Kernel bandwidth selection for a first order nonparametric streamflow simulation model
    A. Sharma
    U. Lall
    D. G. Tarboton
    [J]. Stochastic Hydrology and Hydraulics, 1998, 12 : 33 - 52
  • [3] Kernel bandwidth selection for a first order nonparametric streamflow simulation model
    Sharma, A
    Lall, U
    Tarboton, DG
    [J]. STOCHASTIC HYDROLOGY AND HYDRAULICS, 1998, 12 (01): : 33 - 52
  • [4] Kernel Bandwidth Estimation for Nonparametric Modeling
    Bors, Adrian G.
    Nasios, Nikolaos
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2009, 39 (06): : 1543 - 1555
  • [5] ON THE CHOICE OF THE BANDWIDTH IN KERNEL NONPARAMETRIC REGRESSION
    TSYBAKOV, AB
    [J]. THEORY OF PROBABILITY AND ITS APPLICATIONS, 1988, 32 (01) : 142 - 148
  • [6] Kernel Selection in Nonparametric Regression
    Halconruy, H.
    Marie, N.
    [J]. MATHEMATICAL METHODS OF STATISTICS, 2020, 29 (01) : 32 - 56
  • [7] Kernel Selection in Nonparametric Regression
    H. Halconruy
    N. Marie
    [J]. Mathematical Methods of Statistics, 2020, 29 : 32 - 56
  • [8] Bayesian Estimation of Kernel Bandwidth for Nonparametric Modelling
    Bors, Adrian G.
    Nasios, Nikolaos
    [J]. ARTIFICIAL NEURAL NETWORKS - ICANN 2009, PT II, 2009, 5769 : 245 - 254
  • [9] Selection of bandwidth for kernel regression
    Kolacek, Jan
    Horova, Ivanka
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2016, 45 (05) : 1487 - 1500
  • [10] Bandwidth selection for nonparametric modal regression
    Zhou, Haiming
    Huang, Xianzheng
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2019, 48 (04) : 968 - 984