Bandwidth selection for nonparametric modal regression

被引:8
|
作者
Zhou, Haiming [1 ]
Huang, Xianzheng [2 ]
机构
[1] Northern Illinois Univ, Div Stat, De Kalb, IL USA
[2] Univ South Carolina, Dept Stat, Columbia, SC 29208 USA
关键词
Bootstrap; Cross-validation; Hausdorff distance; Mean shift algorithm;
D O I
10.1080/03610918.2017.1402044
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In the context of estimating local modes of a conditional density based on kernel density estimators, we show that existing bandwidth selection methods developed for kernel density estimation are unsuitable for mode estimation. We propose two methods to select bandwidths tailored for mode estimation in the regression setting . Numerical studies using synthetic data and a real-life dataset are carried out to demonstrate the performance of the proposed methods in comparison with several well-received bandwidth selection methods for density estimation.
引用
收藏
页码:968 / 984
页数:17
相关论文
共 50 条