Propagation of Singularities for Weak KAM Solutions and Barrier Functions

被引:10
|
作者
Cannarsa, Piermarco [1 ]
Cheng, Wei [2 ]
Zhang, Qi [3 ]
机构
[1] Univ Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, Italy
[2] Nanjing Univ, Dept Math, Nanjing 210093, Jiangsu, Peoples R China
[3] Nanjing Univ Aeronaut & Astronaut, Dept Math, Nanjing 210016, Jiangsu, Peoples R China
关键词
Viscosity Solution; Homoclinic Orbit; Jacobi Equation; Viscosity Subsolution; Local Maximum Point;
D O I
10.1007/s00220-014-2106-x
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper studies the structure of the singular set (points of nondifferentiability) of viscosity solutions to Hamilton-Jacobi equations associated with general mechanical systems on the n-torus. First, using the level set method, we characterize the propagation of singularities along generalized characteristics. Then, we obtain a local propagation result for singularities of weak KAM solutions in the supercritical case. Finally, we apply such a result to study the propagation of singularities for barrier functions.
引用
收藏
页码:1 / 20
页数:20
相关论文
共 50 条