Weak KAM for commuting Hamiltonians

被引:7
|
作者
Zavidovique, M. [1 ]
机构
[1] UMPA, ENS Lyon, F-69007 Lyon, France
关键词
COMPACT MANIFOLDS; JACOBI EQUATION; MULTITIME EQUATIONS; LAGRANGIAN SYSTEMS; MATHER THEORY; EXISTENCE;
D O I
10.1088/0951-7715/23/4/002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For two commuting Tonelli Hamiltonians, we recover the commutation of the Lax-Oleinik semi-groups, a result of Barles and Tourin (2001 Indiana Univ. Math. J. 50 1523-44), using a direct geometrical method (Stoke's theorem). We also obtain a 'generalization' of a theorem of Maderna (2002 Bull. Soc. Math. France 130 493-506). More precisely, we prove that if the phase space is the cotangent of a compact manifold then the weak KAM solutions (or viscosity solutions of the critical stationary Hamilton-Jacobi equation) for G and for H are the same. As a corollary we obtain the equality of the Aubry sets and of the Peierls barrier. This is also related to works of Sorrentino (2009 On the Integrability of Tonelli Hamiltonians Preprint) and Bernard (2007 Duke Math. J. 136 401-20).
引用
收藏
页码:793 / 808
页数:16
相关论文
共 50 条