Quasi-exact solutions for the Bohr Hamiltonian with sextic oscillator potential

被引:0
|
作者
Buganu, P. [1 ]
Budaca, R. [1 ,4 ]
Chabab, M. [3 ]
Lahbas, A. [2 ,3 ]
Oulne, M. [3 ]
机构
[1] Natl Inst Phys & Nucl Engn, Dept Theoret Phys, Str Reactorului 30,POB-MG6, RO-077125 Bucharest, Romania
[2] Mohammed V Univ Rabat, Fac Sci, Dept Phys, ESMaR, Rabat, Morocco
[3] Cadi Ayyad Univ, Fac Sci Semlalia, Dept Phys, LPHEA, POB 2390, Marrakech 40000, Morocco
[4] Acad Romanian Scientists, 54 Splaiul Independentei, RO-050094 Bucharest, Romania
关键词
NUCLEAR-DATA SHEETS; MODEL DESCRIPTION; COEXISTENCE;
D O I
10.1088/1742-6596/1555/1/012012
中图分类号
O59 [应用物理学];
学科分类号
摘要
A discussion on the quasi-exact solution of the Bohr Hamiltonian with sextic oscillator potential is made by attracting the attention on some recent results of its application to the phase transition from spherical vibrator to a gamma-unstable system. More precisely, it is underlined the importance of the solvability order on the structure of the states, especially in the critical point, respectively, in the deformed region of the phase transition.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Extended study on a quasi-exact solution of the Bohr Hamiltonian
    Budaca, R.
    Buganu, P.
    Chabab, M.
    Lahbas, A.
    Oulne, M.
    [J]. ANNALS OF PHYSICS, 2016, 375 : 65 - 90
  • [2] Extended analytical solutions of the Bohr Hamiltonian with the sextic oscillator
    Levai, G.
    Arias, J. M.
    [J]. JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 2021, 48 (08)
  • [4] A class of quasi-exact solutions of Rabi Hamiltonian
    Pan, Feng
    Yao, You-Kun
    Xie, Ming-Xia
    Han, Wen-Juan
    Draayer, J. P.
    [J]. COMMUNICATIONS IN THEORETICAL PHYSICS, 2007, 48 (01) : 53 - 56
  • [5] Z(4)-Sextic: A γ-rigid solution of the Bohr Hamiltonian with sextic oscillator potential for β and γ=30°
    Buganu, P.
    Budaca, R.
    [J]. NUCLEAR STRUCTURE AND DYNAMICS '15, 2015, 1681
  • [6] Extended analytical solutions of the Bohr Hamiltonian with the sextic oscillator: Pt-Os isotopes
    Baid, S.
    Levai, G.
    Arias, J. M.
    [J]. JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 2023, 50 (04)
  • [7] γ-Unstable Bohr Hamiltonian with sextic potential for odd-A nuclei
    Sobhani, Hadi
    Hassanabadi, Hassan
    Bonatsos, Dennis
    Pan, Feng
    Draayer, Jerry P.
    [J]. NUCLEAR PHYSICS A, 2020, 1002
  • [8] Quasi-exact treatment of the relativistic generalized isotonic oscillator
    Agboola, D.
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2012, 53 (05)
  • [9] SUPERINTEGRABILITY AND QUASI-EXACT SOLVABILITY. THE ANISOTROPIC OSCILLATOR
    Pocosyan, G. S.
    [J]. DIFFERENCE EQUATIONS, SPECIAL FUNCTIONS AND ORTHOGONAL POLYNOMIALS, 2007, : 520 - 526
  • [10] Quasi-exact solutions of nonlinear differential equations
    Kudryashov, Nikolay A.
    Kochanov, Mark B.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2012, 219 (04) : 1793 - 1804