Role of Plasma Elongation on Turbulent Transport in Magnetically Confined Plasmas

被引:37
|
作者
Angelino, P. [1 ]
Garbet, X. [1 ]
Villard, L. [2 ]
Bottino, A. [3 ]
Jolliet, S. [2 ]
Ghendrih, Ph. [1 ]
Grandgirard, V. [1 ]
McMillan, B. F. [2 ]
Sarazin, Y. [1 ]
Dif-Pradalier, G. [1 ]
Tran, T. M. [2 ]
机构
[1] CEA DSM IRFM, Assoc Euratom CEA, Cadarache, France
[2] Assoc Euratom Confederat Suisse, CRPP Lausanne, Lausanne, Switzerland
[3] IPP EURATOM Assoc, Max Planck Inst Plasmaphys, Garching, Germany
关键词
MODES; SIMULATIONS; EQUILIBRIA; CODE;
D O I
10.1103/PhysRevLett.102.195002
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The theoretical study of plasma turbulence is of central importance to fusion research. Experimental evidence indicates that the confinement time results mainly from the turbulent transport of energy, the magnitude of which depends on the turbulent state resulting from nonlinear saturation mechanisms, in particular, the self-generation of coherent macroscopic structures and large scale flows. Plasma geometry has a strong impact on the structure and magnitude of these flows and also modifies the mode linear growth rates. Nonlinear global gyrokinetic simulations in realistic tokamak magnetohydrodynamic equilibria show how plasma shape can control the turbulent transport. Results are best described in terms of an effective temperature gradient. With increasing plasma elongation, the nonlinear critical effective gradient is not modified while the stiffness of transport is decreasing.
引用
收藏
页数:4
相关论文
共 50 条
  • [31] Energetic electron transport in the presence of magnetic perturbations in magnetically confined plasmas
    Papp, G.
    Drevlak, M.
    Pokol, G. I.
    Fulop, T.
    JOURNAL OF PLASMA PHYSICS, 2015, 81
  • [32] POINCARE MAP AND ANOMALOUS TRANSPORT IN A MAGNETICALLY CONFINED PLASMA
    BAZZANI, A
    MALAVASI, M
    SIBONI, S
    PELLACANI, C
    RAMBALDI, S
    TURCHETTI, G
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1989, 103 (06): : 659 - 668
  • [33] Measurement of the tilt angle of turbulent structures in magnetically confined plasmas using Doppler reflectometry
    Pinzon, J. R.
    Estrada, T.
    Heppel, T.
    Hennequin, P.
    Blanco, E.
    Stroth, U.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2019, 61 (10)
  • [34] ANOMALOUS FLUXES IN THE PLATEAU REGIME FOR A WEAKLY TURBULENT, MAGNETICALLY CONFINED PLASMA
    BALESCU, R
    PHYSICS OF FLUIDS B-PLASMA PHYSICS, 1990, 2 (09): : 2100 - 2112
  • [35] On the Turbulent Behavior of a Magnetically Confined Plasma near the X-Point
    Montani, Giovanni
    Carlevaro, Nakia
    Tirozzi, Brunello
    FLUIDS, 2022, 7 (05)
  • [36] Numerical simulations of magnetically confined plasmas
    Galata, A.
    Mascali, D.
    Torrisi, G.
    Gallo, C. S.
    JOURNAL OF INSTRUMENTATION, 2018, 13
  • [37] On the turbulence interface in magnetically confined plasmas
    Kobayashi, Tatsuya
    FRONT-RUNNERS' SYMPOSIUM ON PLASMA PHYSICS IN HONOR OF PROFESSORS KIMITAKA ITOH AND SANAE-I. ITOH, 2018, 1993
  • [38] Computation of turbulence in magnetically confined plasmas
    Scott, Bruce D.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2006, 48 (12B) : B277 - B293
  • [39] Microwave reflectometry for magnetically confined plasmas
    Mazzucato, E
    REVIEW OF SCIENTIFIC INSTRUMENTS, 1998, 69 (06): : 2201 - 2217
  • [40] ON ORIGIN OF ROTATION IN MAGNETICALLY CONFINED PLASMAS
    HAINES, MG
    ADVANCES IN PHYSICS, 1965, 14 (54) : 167 - &