Measurement of the tilt angle of turbulent structures in magnetically confined plasmas using Doppler reflectometry

被引:14
|
作者
Pinzon, J. R. [1 ,2 ]
Estrada, T. [3 ]
Heppel, T. [1 ]
Hennequin, P. [4 ]
Blanco, E. [3 ]
Stroth, U. [1 ,2 ]
机构
[1] Max Plank Inst Plasmaphys, Garching, Germany
[2] TUM, Phys Dept E28, D-85748 Garching, Germany
[3] CIEMAT, Lab Nacl Fus, Madrid, Spain
[4] Ecole Polytech, Lab Phys Plasmas, Palaiseau, France
关键词
plasma turbulence; plasma diagnostics; Doppler reflectometry; TRANSPORT; MODE;
D O I
10.1088/1361-6587/ab394d
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The mean tilt angle of turbulent structures is a key element for describing the turbulence and its interplay with plasma flows in magnetically confined plasmas. It is a quantity predicted by theories and gyrokinetic simulations, which can provide information on the type of the dominant micro-instability, and also on the turbulence anisotropy induced by sheared flows. A new method for measuring the tilt angle of turbulent structures using Doppler reflectometry has been recently introduced (Pinzon et al 2019 Nucl. Fusion 59 074002). It is based on the time delay of the cross-correlation between microwaves backscattered at radially displaced positions. In this paper, the method is presented in detail and is successfully applied on the ASDEX Upgrade tokamak and the TJ-II stellarator. Measurements of the tilt angle in the core of both machines are reported, in the TJ-II case, for the first time.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Microwave reflectometry for magnetically confined plasmas
    Mazzucato, E
    REVIEW OF SCIENTIFIC INSTRUMENTS, 1998, 69 (06): : 2201 - 2217
  • [2] Experimental investigation of the tilt angle of turbulent structures in the core of fusion plasmas
    Pinzon, J. R.
    Happel, T.
    Hennequin, P.
    Angioni, C.
    Estrada, T.
    Lebschy, A.
    Stroth, U.
    NUCLEAR FUSION, 2019, 59 (07)
  • [3] Size scaling of turbulent transport in magnetically confined plasmas
    Lin, Z
    Ethier, S
    Hahm, TS
    Tang, WM
    PHYSICAL REVIEW LETTERS, 2002, 88 (19) : 4 - 195004
  • [4] Recurrence Analysis of Turbulent Fluctuations in Magnetically Confined Plasmas
    Viana, R. L.
    Toufen, Dennis L.
    Guimaraes-Filho, Z. O.
    Caldas, I. L.
    Gentle, K. W.
    Nascimento, I. C.
    RECURRENCE PLOTS AND THEIR QUANTIFICATIONS: EXPANDING HORIZONS, 2016, 180 : 341 - 353
  • [5] Turbulent transport across shear layers in magnetically confined plasmas
    Nold, B.
    Manz, P.
    Ribeiro, T. T.
    Fuchert, G.
    Birkenmeier, G.
    Mueller, H. W.
    Ramisch, M.
    Scott, B. D.
    Stroth, U.
    PHYSICS OF PLASMAS, 2014, 21 (10)
  • [6] Turbulent transport in magnetically confined plasmas with flow in the drift approximation
    Martinell, J. J.
    Torres, J.
    Tafoya, C. A.
    RADIATION EFFECTS AND DEFECTS IN SOLIDS, 2020, 175 (11-12): : 994 - 997
  • [7] Role of Plasma Elongation on Turbulent Transport in Magnetically Confined Plasmas
    Angelino, P.
    Garbet, X.
    Villard, L.
    Bottino, A.
    Jolliet, S.
    Ghendrih, Ph.
    Grandgirard, V.
    McMillan, B. F.
    Sarazin, Y.
    Dif-Pradalier, G.
    Tran, T. M.
    PHYSICAL REVIEW LETTERS, 2009, 102 (19)
  • [8] Microwave reflectometry for magnetically confined plasmas (vol 69, pg 2201, 1998)
    Mazzucato, E
    REVIEW OF SCIENTIFIC INSTRUMENTS, 1998, 69 (11): : 4014 - 4014
  • [9] On the interplay between MHD instabilities and turbulent transport in magnetically confined plasmas
    Ida, K.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2020, 62 (01)
  • [10] EVOLUTION OF PELLET CLOUDS AND CLOUD STRUCTURES IN MAGNETICALLY CONFINED PLASMAS
    LENGYEL, LL
    ZAVALA, GG
    KARDAUN, OJWF
    LALOUSIS, P
    NUCLEAR FUSION, 1991, 31 (06) : 1107 - 1121