Role of Plasma Elongation on Turbulent Transport in Magnetically Confined Plasmas

被引:37
|
作者
Angelino, P. [1 ]
Garbet, X. [1 ]
Villard, L. [2 ]
Bottino, A. [3 ]
Jolliet, S. [2 ]
Ghendrih, Ph. [1 ]
Grandgirard, V. [1 ]
McMillan, B. F. [2 ]
Sarazin, Y. [1 ]
Dif-Pradalier, G. [1 ]
Tran, T. M. [2 ]
机构
[1] CEA DSM IRFM, Assoc Euratom CEA, Cadarache, France
[2] Assoc Euratom Confederat Suisse, CRPP Lausanne, Lausanne, Switzerland
[3] IPP EURATOM Assoc, Max Planck Inst Plasmaphys, Garching, Germany
关键词
MODES; SIMULATIONS; EQUILIBRIA; CODE;
D O I
10.1103/PhysRevLett.102.195002
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The theoretical study of plasma turbulence is of central importance to fusion research. Experimental evidence indicates that the confinement time results mainly from the turbulent transport of energy, the magnitude of which depends on the turbulent state resulting from nonlinear saturation mechanisms, in particular, the self-generation of coherent macroscopic structures and large scale flows. Plasma geometry has a strong impact on the structure and magnitude of these flows and also modifies the mode linear growth rates. Nonlinear global gyrokinetic simulations in realistic tokamak magnetohydrodynamic equilibria show how plasma shape can control the turbulent transport. Results are best described in terms of an effective temperature gradient. With increasing plasma elongation, the nonlinear critical effective gradient is not modified while the stiffness of transport is decreasing.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Size scaling of turbulent transport in magnetically confined plasmas
    Lin, Z
    Ethier, S
    Hahm, TS
    Tang, WM
    PHYSICAL REVIEW LETTERS, 2002, 88 (19) : 4 - 195004
  • [2] Turbulent transport across shear layers in magnetically confined plasmas
    Nold, B.
    Manz, P.
    Ribeiro, T. T.
    Fuchert, G.
    Birkenmeier, G.
    Mueller, H. W.
    Ramisch, M.
    Scott, B. D.
    Stroth, U.
    PHYSICS OF PLASMAS, 2014, 21 (10)
  • [3] Turbulent transport in magnetically confined plasmas with flow in the drift approximation
    Martinell, J. J.
    Torres, J.
    Tafoya, C. A.
    RADIATION EFFECTS AND DEFECTS IN SOLIDS, 2020, 175 (11-12): : 994 - 997
  • [4] On the interplay between MHD instabilities and turbulent transport in magnetically confined plasmas
    Ida, K.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2020, 62 (01)
  • [5] TRANSPORT PROCESSES IN MAGNETICALLY CONFINED PLASMAS
    CALLEN, JD
    PHYSICS OF FLUIDS B-PLASMA PHYSICS, 1992, 4 (07): : 2142 - 2154
  • [6] Recurrence Analysis of Turbulent Fluctuations in Magnetically Confined Plasmas
    Viana, R. L.
    Toufen, Dennis L.
    Guimaraes-Filho, Z. O.
    Caldas, I. L.
    Gentle, K. W.
    Nascimento, I. C.
    RECURRENCE PLOTS AND THEIR QUANTIFICATIONS: EXPANDING HORIZONS, 2016, 180 : 341 - 353
  • [7] Plasma networking in magnetically confined plasmas and diagnostics of nonlocal heat transport in tokamak filamentary plasmas
    Kukushkin, AB
    Rantsev-Kartinov, VA
    REVIEW OF SCIENTIFIC INSTRUMENTS, 1999, 70 (02): : 1392 - 1396
  • [8] Shearless transport barriers in magnetically confined plasmas
    Caldas, I. L.
    Viana, R. L.
    Abud, C. V.
    Fonseca, J. C. D.
    Guimaraes Filho, Z. O.
    Kroetz, T.
    Marcus, F. A.
    Schelin, A. B.
    Szezech, J. D., Jr.
    Toufen, D. L.
    Benkadda, S.
    Lopes, S. R.
    Morrison, P. J.
    Roberto, M.
    Gentle, K.
    Kuznetsov, Yu
    Nascimento, I. C.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2012, 54 (12)
  • [9] THERMODYNAMICS OF THE TRANSPORT PHENOMENA IN MAGNETICALLY CONFINED PLASMAS
    BALESCU, R
    PHYSICS OF IONIZED GASES //, 1989, : 577 - 593
  • [10] Impurity transport in magnetically confined plasmas Preface
    Fulop, Tunde
    Hutchinson, Ian
    Reinke, Matthew
    PLASMA PHYSICS AND CONTROLLED FUSION, 2014, 56 (12)