Uniform Continuity of Fractal Interpolation Function

被引:0
|
作者
Pan, Xuezai [1 ]
Wang, Minggang [2 ]
Shang, Xudong [1 ]
机构
[1] Nanjing Normal Univ, Sch Math, Taizhou Coll, Taizhou 225300, Peoples R China
[2] Nanjing Normal Univ, Sch Math, Nanjing 210046, Peoples R China
基金
中国国家自然科学基金;
关键词
SURFACES;
D O I
10.1155/2020/7840432
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In order to research analysis properties of fractal interpolation function generated by the iterated function system defined by affine transformation, the continuity of fractal interpolation function is proved by the continuous definition of function and the uniform continuity of fractal interpolation function is proved by the definition of uniform continuity and compactness theorem of sequence of numbers or finite covering theorem in this paper. The result shows that the fractal interpolation function is uniformly continuous in a closed interval which is from the abscissa of the first interpolation point to that of the last one.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] INTERPOLATION ANALOGUE OF WIENERS CRITERION OF BOUNDED VARIATION FUNCTION CONTINUITY
    BERMAN, DL
    DOKLADY AKADEMII NAUK SSSR, 1971, 196 (03): : 495 - &
  • [42] Fractal interpolation surfaces derived from Fractal interpolation functions
    Bouboulis, P.
    Dalla, L.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 336 (02) : 919 - 936
  • [43] NONLINEAR FRACTAL INTERPOLATION CURVES WITH FUNCTION VERTICAL SCALING FACTORS
    Kim, JinMyong
    Kim, HyonJin
    Mun, HakMyong
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2020, 51 (02): : 483 - 499
  • [44] BOX DIMENSION OF FRACTAL INTERPOLATION SURFACES WITH VERTICAL SCALING FUNCTION
    Jiang, Lai
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2024, 32 (03)
  • [45] Nonlinear fractal interpolation curves with function vertical scaling factors
    JinMyong Kim
    HyonJin Kim
    HakMyong Mun
    Indian Journal of Pure and Applied Mathematics, 2020, 51 : 483 - 499
  • [46] LINEAR FRACTAL INTERPOLATION FUNCTION FOR DATA SET WITH RANDOM NOISE
    Kumar, Mohit
    Upadhye, Neelesh S.
    Chand, A. K. B.
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2022, 30 (09)
  • [48] Bernstein super fractal interpolation function for countable data systems
    Chandra, Subhash
    Abbas, Syed
    Verma, Saurabh
    NUMERICAL ALGORITHMS, 2023, 92 (04) : 2457 - 2481
  • [49] Bernstein super fractal interpolation function for countable data systems
    Subhash Chandra
    Syed Abbas
    Saurabh Verma
    Numerical Algorithms, 2023, 92 : 2457 - 2481
  • [50] Fractal Calculus on Fractal Interpolation Functions
    Gowrisankar, Arulprakash
    Khalili Golmankhaneh, Alireza
    Serpa, Cristina
    FRACTAL AND FRACTIONAL, 2021, 5 (04)