BOX DIMENSION OF FRACTAL INTERPOLATION SURFACES WITH VERTICAL SCALING FUNCTION

被引:0
|
作者
Jiang, Lai [1 ]
机构
[1] Zhejiang Univ, Sch Math Sci, Hangzhou 310058, Peoples R China
关键词
Fractal Interpolation Surfaces; Box Dimension; Vertical Scaling Matrices;
D O I
10.1142/S0218348X24500713
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we first present a simple lemma which allows us to estimate the box dimension of graphs of given functions by the associated oscillation sums and oscillation vectors. Then we define vertical scaling matrices of generalized affine fractal interpolation surfaces (FISs). By using these matrices, we establish relationships between oscillation vectors of different levels, which enables us to obtain the box dimension of generalized affine FISs under certain constraints.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Fractal interpolation surfaces with function vertical scaling factors
    Feng, Zhigang
    Feng, Yizhuo
    Yuan, Zhenyou
    [J]. APPLIED MATHEMATICS LETTERS, 2012, 25 (11) : 1896 - 1900
  • [2] BOX DIMENSION OF BILINEAR FRACTAL INTERPOLATION SURFACES
    Kong, Qing-Ge
    Ruan, Huo-Jun
    Zhang, Sheng
    [J]. BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2018, 98 (01) : 113 - 121
  • [3] Construction and box dimension of recurrent fractal interpolation surfaces
    Liang, Zhen
    Ruan, Huo-Jun
    [J]. JOURNAL OF FRACTAL GEOMETRY, 2021, 8 (03) : 261 - 288
  • [4] The box dimension of the bilinear fractal interpolation surfaces on grids
    Malysz, R
    [J]. CISST'03: PROCEEDING OF THE INTERNATIONAL CONFERENCE ON IMAGING SCIENCE, SYSTEMS AND TECHNOLOGY, VOLS 1 AND 2, 2003, : 738 - 744
  • [5] CONSTRUCTION OF RECURRENT FRACTAL INTERPOLATION SURFACES WITH FUNCTION SCALING FACTORS AND ESTIMATION OF BOX-COUNTING DIMENSION ON RECTANGULAR GRIDS
    Yun, Chol-Hui
    Choi, Hui-Chol
    Hyong-Chol, O.
    [J]. FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2015, 23 (04)
  • [6] Construction and box dimension of the composite fractal interpolation function
    Dai, Zhong
    Liu, Shutang
    [J]. CHAOS SOLITONS & FRACTALS, 2023, 169
  • [7] Bilinear fractal interpolation and box dimension
    Barnsley, Michael F.
    Massopust, Peter R.
    [J]. JOURNAL OF APPROXIMATION THEORY, 2015, 192 : 362 - 378
  • [8] Box dimension of α-fractal function with variable scaling factors in subintervals
    Akhtar, Md Nasim
    Prasad, M. Guru Prem
    Navascures, M. A.
    [J]. CHAOS SOLITONS & FRACTALS, 2017, 103 : 440 - 449
  • [9] NONLINEAR FRACTAL INTERPOLATION CURVES WITH FUNCTION VERTICAL SCALING FACTORS
    Kim, JinMyong
    Kim, HyonJin
    Mun, HakMyong
    [J]. INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2020, 51 (02): : 483 - 499
  • [10] Nonlinear fractal interpolation curves with function vertical scaling factors
    JinMyong Kim
    HyonJin Kim
    HakMyong Mun
    [J]. Indian Journal of Pure and Applied Mathematics, 2020, 51 : 483 - 499